To view the PDF file, sign up for a MySharenet subscription.

KORE POTASH PLC - Kola Definitive Feasibility Study

Release Date: 29/01/2019 09:00
Code(s): KP2     PDF:  
Wrap Text
Kola Definitive Feasibility Study

Kore Potash plc
(Incorporated in England and Wales)
Registration number 10933682
ASX share code: KP2
AIM share code: KP2
JSE share code:KP2
ISIN: GB00BYP2QJ94
(“Kore Potash” or the “Company”)


                                  Kola Definitive Feasibility Study

Kore Potash, the potash development company whose flagship asset is the 97%-owned Sintoukola
Potash Project (“Project”), is pleased to announce outcomes of the Kola Potash Project Definitive
Feasibility Study (“DFS”). The Kola DFS was undertaken by a consortium of French engineering
companies (“FC”) during 2017 and 2018. A summary of the results is presented herein.

Highlights:

Business case highlights potential of the Kola asset

    -   Post-tax, NPV10 (real) of US$1,452M and a real ungeared IRR of 17% on an attributable basis
        at life-of-mine average Muriate of Potash (“MoP”) prices for granular of US$360/t CFR Brazil
        and standard of US$350/t CFR Brazil

    -   Operating cash margin averaging 75%

    -   Average annual EBITDA of approx. US$585M

    -   24% annual free cash return on invested capital

    -   Average annual free cash flow, post-tax, post commissioning of approx. US$500M

    -   4.3-year post-tax payback period from first production



Industry leading operating costs and cost of sales

    -   Mine gate operating cost (pre-transshipment) averaging US$61.71/t, which is in the lowest
        cost quartile globally based on equivalent CRU market data

    -   Kola forecast to be lowest cost potash supplier CFR Brazil based on CRU market data

    -   Significant competitive advantage via low mine gate costs and short shipping distance to
        Brazil and West African markets

    -   Average cost of MoP delivered to Brazil of US$102.47/t




                                                                                                  1
Long life and high quality asset

    -   Nameplate production target of 2.2 Mtpa MoP over a 33 year life, with a scheduled life of 23
        years based primarily on Ore Reserves and including 6% Inferred Mineral Resource and a
        further 10 years based entirely on Inferred Mineral Resources (in each case, reported in
        accordance with the JORC 2012)

    -   There is a low level of geological confidence associated with inferred mineral resources and
        there is no certainty that further exploration work will result in the determination of
        indicated mineral resource or that the production target itself will be realised

    -   Kola Project Ore Reserves of 152.4 Mt with average KCl grade of 32.5%, reported in
        accordance with JORC 2012

    -   Ore Reserves grade is in top quartile of all operating potash mines and potash development
        projects globally



Capital Program Aligned with Industry Averages

    -   Pre-production capital cost of US$2.1B (on EPCM basis) which includes US$110M
        contingency, US$106M of escalation and US$89M EPCM margin

    -   Pre-production capital intensity of US$956/t MoP annual capacity is in second quartile
        relative to MoP industry peers and suggests that further capital optimisation is possible (see
        Appendix A, Section 13 for further details)

    -   Capital cost includes value adding transshipment and overland conveyor costs of US$120M,
        that were not considered in the Pre-Feasibility Study

    -   46-month construction period, with a commencement date to be determined following
        advancement of construction contract negotiations and project financing



Upside Potential

    -   Review of the DFS by Kore and its third party independent consultants have identified
        opportunities to further improve and optimise the project indicating that the work
        completed to date by the FC has not fully optimised the Kola Project. (see Appendix A,
        Section 14 for further details)

    -   These potential improvement opportunities are not included in the DFS economic evaluation
        and include:

            -   Opportunities to reduce the technical capital cost by US$117M

            -   Further opportunity to reduce the capital costs noting that the DFS capital intensity
                lies in second quartile relative to MoP industry peers and, in comparison to other
                projects, Kola has shallow shafts, low insolubles, high KCl grade and is next to the
                coast and the planned export jetty

            -   Potential to improve KCl recovery in the process plant by 0.9% to 92.8%


                                                                                                    2
             -   Potential to reduce the construction schedule by 6 months from 46 to 40 months

             -   Potential to extend the life or scale of the project provided by the Sylvinite Mineral
                 Resources at the nearby Dougou Extension deposit; 232Mt at 38.1% KCl (Table 4)

    -   Due to high operating margin and high free cash return on invested capital the Company’s
        financial advisors (Rothschild & Co) has indicated that the project has a debt carrying
        potential of up to US$1.4B

    -   Further work will be required to optimise the project and there is no certainty that the
        identified improvement opportunities can be realised



Next Steps

    -   The French Consortium (FC), who undertook the DFS, are contracted to deliver a proposal
        for an Engineering, Procurement and Construction (EPC) contract within 3 months of DFS
        completion. The FC have advised Kore that they expect to provide an EPC proposal to Kore
        within this quarter.

    -   Upon receipt of an EPC proposal, the existing contract between the parties provides up to
        two months for Kore and the FC to conclude the terms of an EPC contract.

    -   Kore has ability within the existing contract with the FC to seek competitive EPC proposals
        from European companies.

    -   The Company continues its engagement with the FC and Kore’s consultants and technical
        experts with a view to further optimising the project.

    -   The DFS was delivered to Kore for review by the FC later than contracted, and the review of
        the DFS by consultants engaged by Kore indicates that the project design and capital cost
        can be further improved to reduce the capital cost. As a result, Kore has in accordance with
        the contractual terms, issued notices of deficiency to the FC seeking to address these
        matters.

    -   The company will continue to work with the RoC government to conclude the approval of
        the amended ESIA, while noting all other conventions, permits and rights to operate are in
        place.

    -   The Mining Convention requires transfer to the RoC Government of 10% of the shares in the
        local company that holds the Kola mining licence. The process to effect this transfer has not
        yet been clarified and Kore will progress this with the Government.

    -   The Company and its financial advisors will continue discussion with potential financiers to
        further the financing of the project.



Brad Sampson, CEO of Kore, commented: “Kore’s review of the DFS confirms the high quality of this
potash asset and its importance globally. Kola is designed to deliver potash to markets in Latin
America and Africa at a significantly lower cost than other potash producers over a long timeframe.
It stands out globally as a project that needs to be brought into operation to meet the growing global demand for MoP. 
In the near future, we expect the amended ESIA to be approved as the last step to
full permitting of the Project."

“We look forward to receiving an EPC proposal from the French Consortium this quarter which will
allow Kore to provide further detail to shareholders on the Company’s plans for Kola.”


Analyst conference call and presentation

Kore will host an analyst conference call and presentation today, 29 January 2019, at 10:30 GMT.
Participants can access the call by dialling one of the following numbers below approximately 10
minutes prior to the start of the call.

UK Toll-Free Number: 0800 358 9473

UK Toll Number: +44 3333 000 804

PIN: 77650625

The presentation will be available live during the call at:

https://event.on24.com/wcc/r/1925417-1/2ABD36868088F504EED26A4BF632D6F7

A recording of the conference call will subsequently be available on the Company's website.

The presentation is also available for download from the Company's website www.korepotash.com



Table 1: Key Project Metrics:

Project physicals               Units                  Project financials                  Units
Total MoP production             Mt              71    Total revenue                       US$M      25,508
MoP granular product grade      % KCl          95.3    Average Annual Revenue              US$M         773
MoP standard product grade      % KCl          96.8    Average annual EBITDA               US$M         583
Average MoP production          Mtpa           2.20    EBITDA Margin                        %           75%
                                                       Average post-construction post
Average mining rate             Mtpa           7.12                                        US$M         499
                                                       tax annual free cash flow
Capital cost                                           Free cash flow Margin                %           65%
                                                       Total project post tax free cash
Pre-production capital cost     US$M          2,103                                        US$M      14,545
                                                       flow (gross)
Capital intensity (based on                            Post tax, real un-geared NPV (10%
                              US$/tpa           956                                        US$M       1,452
nameplate capacity)                                    real)

Operating costs                                        Post tax, real un-geared IRR         %          17.2%
Mine gate cost (pre-                                   Payback period from date of first
                                US$/t          61.7                                        years        4.3
tranship)                                              production
                                                       Average forecast MoP granular
CFR Brazil cash cost            US$/t         102.5                                        US$/t        360
                                                       price (CFR Brazil)




                                                                                                   4
Ore Reserves and Mineral Resources

The Kola Potash Ore Reserves (Table 2) are based on the Kola Sylvinite Mineral Resources as
reported on 6 July 2017. Further detail on the Ore Reserve Estimate is provided in Appendix B:
(Summary of Information required according to ASX listing Rule 5.9.1) and Appendix C (JORC (2012)
Table 1 Section 4.) All of the Ore Reserves and Mineral Resources reported here for Kola and Dougou
Extension are Sylvinite.



Table 2: Kola Sylvinite Ore Reserves

                              Ore Reserves             KCl grade            Mg               Insolubles
       Classification
                                    (Mt)                  (% KCl)           (% Mg)              (% Insol.)
  Proved                            61.8                     32.1            0.11               0.15
  Probable                          90.6                     32.8            0.10               0.15
  Total Ore Reserves               152.4                     32.5            0.10               0.15


Table 3: Kola Sylvinite Mineral Resources (inclusive of Ore Reserves)
                               Million Tonnes                  KCl            Mg             Insoluble
       Classification
                                     (Mt)                    (% KCl)        (% Mg)           (% Insol.)
Total Measured                      215.7                     35.0           0.08               0.13
Total Indicated                     292.0                      35.7          0.06               0.14
Total Inferred                      340.0                      34.0          0.08               0.25
Total Mineral Resources             847.7                      34.9          0.08               0.18


Table 4: Dougou Extension Sylvinite Mineral Resources
                                            Million Tonnes                            KCl
        Classification
                                                  (Mt)                                 %
Total Indicated                                   111                                 37.2
Total Inferred                                    121                                 38.9
Total Mineral Resources                           232                                 38.1


The DFS and the economic evaluation do not consider any of the Mineral Resources at Dougou
Extension and they are presented in Table 4 due to their potential to provide an additional source of
feed into the Kola processing plant.

Reasonable Basis for Forward-Looking Statements (including production target and forecast
financial information) and Ore Reserves

This release, inclusive of Appendix A: Summary results of Kola DFS, contains a series of forward-
looking statements. The Company has concluded that it has a reasonable basis for providing these
forward-looking statements and the forecast financial information included in this release. This
includes a reasonable basis to expect that it will be able to fund the development of the Kola Project
when required.

The detailed reasons for these conclusions are outlined throughout this release, including in Section
20 of Appendix A. All material assumptions, including the JORC modifying factors, upon which the                                                                                                      5
production target and forecast financial information is based are disclosed in this release (including
the summary information in Appendix B and Appendix C). This announcement has been prepared in
accordance with the requirements of the JORC 2012 and the ASX and LSE: AIM Listing Rules.
                                                                                 5

The estimated Ore Reserves (Proved and Probable) and Inferred Mineral Resources underpinning
the production target have been prepared by a competent person in accordance with the
requirements of JORC 2012 Details of those Ore Reserves and Mineral Resources are set out in this
release (including, in relation to the Ore Reserves, the details in Appendix B and C).

The production target of 2.2 Mtpa MoP over a 33 year life is underpinned by 66% of Ore Reserves
and 34% of Inferred Mineral Resources. No exploration targets or qualifying foreign estimates
underpin the production target. In particular, following exhaustion of the Ore Reserve during the
first 23 years of the mine life, which includes the exploitation of 9.7 Mt of Inferred Mineral
Resources (6% of the total production during that period), the Kola DFS plan includes the mining of
Inferred Mineral Resources for a further 10 years. Each of the modifying factors was considered and
applied to this material in preparing the DFS and associated production target.

There is a lower level of geological confidence associated with Inferred Mineral Resources and there
is no certainty that further exploration will result in the determination of Indicated Mineral
Resources or that the production target will be realised.

A copy of this announcement including the diagrams and schematics referred to in this
announcement are available on the Company’s website at http://www.korepotash.com/wp-
content/uploads/2019/01/Kola-Definitive-Feasibility-Study.pdf


29 January 2019

JSE Sponsor: Rencap Securities (Pty) Limited


                                               – ENDS –



  Contacts:

  Brad Sampson                    Jos Simson/Edward Lee           Martin Davison/James Asensio

  Chief Executive Officer         Tavistock                       Canaccord Genuity
                                  (UK media enquiries)            (Nomad and Broker)

  Tel: +27 11 469 9144            Tel: +44 (0) 207 920 3150       Tel: +44 (0) 20 7523 4600

                                  Tel: +44 (0) 7736 220 565

  info@korepotash.com             kore@tavistock.co.uk            kore@canaccordgenuity.com



Competent Persons Statement

The estimated Ore Reserves and Mineral Resources underpinning the production target have been
prepared by a competent person in accordance with the requirements of the JORC code.


                                                                                                    6
The information relating to Exploration Results and Mineral Resources in this report is based on, or
extracted from previous reports referred to herein, and available to view on the Company’s website
www.korepotash.com. The Kola Mineral Resource Estimate was reported on 6 July 2017 in an
announcement titled ‘Updated Mineral Resource for the High-Grade Kola Deposit’. The Dougou
Extension sylvinite Mineral Resource Estimate was reported on 20 August 2018 in an announcement
titled ‘Maiden Sylvinite Mineral Resource at Dougou Extension’. The Company confirms that it is not
aware of any new information or data that materially affects the information included in the original
market announcements and that all material assumptions and technical parameters underpinning
the estimates in the relevant market announcement continue to apply and have not materially
changed. The Company confirms that the form and context in which the Competent Person’s
findings are presented have not been materially modified from the original market announcement.

The information in this report that relates to Ore Reserves is based on information compiled or
reviewed by, Mo Molavi, P. Eng., who has read and understood the requirements of the 2012 Edition
of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves
(JORC Code, 2012 Edition). Mr. Molavi is a Competent Person as defined by the JORC Code 2012
Edition, having a minimum of five years of experience that is relevant to the style of mineralization
and type of deposit described in this report, and to the activity for which he is accepting
responsibility. Mr. Molavi is member of good standing of Engineers and Geoscientists of British
Columbia (Registration Number 37594) which is an ASX-Recognized Professional Organization (RPO).
Mr. Molavi is a consultant working as a sub-contractor to Met-Chem division of DRA Americas Inc., a
subsidiary of the DRA Group and have been engaged by Met-Chem to review the documentation for
Kola Deposit, on which this report ls based, for the period ended 29 October 2018. Mr. Molavi has
verified that this report is based on and fairly and accurately reflects in the form and context in
which it appears, the information in the supporting documentation relating to preparation of the
geotechnical criteria and review of the Ore Reserves.

The information in the attached report that relates to Valuation of Mineral Assets reflects
information compiled and conclusions derived by Mr. Cowen, who is a Member of The South African
Institute of Mining and Metallurgy. Mr. Cowen is not a permanent employee of the company. Mr.
Cowen has sufficient experience relevant to the Technical Assessment and Valuation of the Mineral
Assets under consideration and to the activity which he is undertaking to qualify as a Practitioner as
defined in the 2015 edition of the ‘Australasian Code for the Public Reporting of Technical
Assessments and Valuations of Mineral Assets’. Mr. Cowen consents to the inclusion in the report of
the matters based on his information in the form and context in which it appears.



Forward-Looking Statements

This release contains certain statements that are "forward-looking" with respect to the financial
condition, results of operations, projects and business of the Company and certain plans and
objectives of the management of the Company. Forward-looking statements include those
containing words such as: “anticipate”, “believe”, "expect," “forecast”, “potential”, "intends,"
"estimate," "will", “plan”, “could”, “may”, “project”, “target”, “likely” and similar expressions
identify forward-looking statements. By their very nature forward-looking statements are subject to
known and unknown risks and uncertainties and other factors which are subject to change without
notice and may involve significant elements of subjective judgement and assumptions as to future
events which may or may not be correct, which may cause the Company’s actual results,



                                                                                                    7
performance or achievements, to differ materially from those expressed or implied in any of our
forward-looking statements, which are not guarantees of future performance.

Neither the Company, nor any other person, gives any representation, warranty, assurance or
guarantee that the occurrence of the events expressed or implied in any forward-looking statement
will actually occur. Except as required by law, and only to the extent so required, none of the
Company, its subsidiaries or its or their directors, officers, employees, advisors or agents or any
other person shall in any way be liable to any person or body for any loss, claim, demand, damages,
costs or expenses of whatever nature arising in any way out of, or in connection with, the
information contained in this document.

In particular, statements in this release regarding the Company's business or proposed business,
which are not historical facts, are "forward-looking" statements that involve risks and uncertainties,
such as Mineral Resource estimates market prices of potash, capital and operating costs, changes in
project parameters as plans continue to be evaluated, continued availability of capital and financing
and general economic, market or business conditions, and statements that describe the Company's
future plans, objectives or goals, including words to the effect that the Company or management
expects a stated condition or result to occur. Since forward-looking statements address future
events and conditions, by their very nature, they involve inherent risks and uncertainties. Actual
results in each case could differ materially from those currently anticipated in such statements.
Shareholders are cautioned not to place undue reliance on forward-looking statements, which speak
only as of the date they are made. The forward-looking statements are based on information
available to the Company as at the date of this release. Except as required by law or regulation
(including the ASX Listing Rules), the Company is under no obligation to provide any additional or
updated information whether as a result of new information, future events or results or otherwise.

Summary information

This announcement has been prepared by Kore Potash plc. This document contains general
background information about Kore Potash plc current at the date of this announcement and does
not constitute or form part of any offer or invitation to purchase, otherwise acquire, issue, subscribe
for, sell or otherwise dispose of any securities, nor any solicitation of any offer to purchase,
otherwise acquire, issue, subscribe for, sell, or otherwise dispose of any securities. The
announcement is in summary form and does not purport to be all-inclusive or complete. It should be
read in conjunction with the Company’s other periodic and continuous disclosure announcements
which are available to view on the Company’s website www.korepotash.com.

The release, publication or distribution of this announcement in certain jurisdictions may be
restricted by law and therefore persons in such jurisdictions into which this announcement is
released, published or distributed should inform themselves about and observe such restrictions.

Not financial advice

This document is for information purposes only and is not financial product or investment advice,
nor a recommendation to acquire securities in Kore Potash plc. It has been prepared without taking
into account the objectives, financial situation or needs of individuals. Before making any investment
decision, prospective investors should consider the appropriateness of the information having
regard to their own objectives, financial situation and needs and seek legal and taxation advice
appropriate to their jurisdiction.




                                                                                                     8
Market Abuse Regulation

This announcement is released by the Company and contains inside information for the purposes of
the Market Abuse Regulation (EU) 596/2014 ("MAR") and is disclosed in accordance with the
Company's obligations under Article 17 of MAR. The person who arranged for the release of this
announcement on behalf of the Company was Brad Sampson, CEO.




                                                                                              9
                                    APPENDIX A
                           Summary results of Kola DFS
1. Project Introduction:

Kore Potash Plc (“Kore”, the “Company” or “KP2”) is a mineral exploration and development
company that is incorporated in the United Kingdom and listed on the AIM (a sub-market of the
London Stock Exchange, as KP2), the Australian Securities Exchange (ASX, as KP2) and the
Johannesburg Stock Exchange (JSE, as KP2).

The primary asset of Kore is the Sintoukola Potash Project which includes the flagship Kola Sylvinite
deposit (the “Kola Project”) in the Republic of Congo (RoC), held by the 97%-owned Sintoukola
Potash SA (SPSA). SPSA has 100% ownership of the Kola Mining Lease, on which the Kola Project is
located.

The Kola Project is situated in the Kouilou Province of the RoC, within 40 km of the Atlantic Coast
and approximately 70 km north of the port city of Pointe Noire.

The Kola DFS considers the mining of the Kola Sylvinite, and the production of circa 2.2 million tons
per annum (Mtpa) of Muriate of Potash (MoP) and its export and considers all associated
infrastructure. It delivers an economic model based on life of project of 23 years based on Ore
Reserves of 152.4Mt and 9.7 Mt of Inferred Mineral Resource, and an additional 10 years (for a 33
year life) when the exploitation of a portion (70Mt) of the Inferred Mineral Resources is included.

Kore commissioned a consortium of French companies (“FC”) to conduct a DFS for the Kola Project.
The FC comprises: Technip France (TPF), Vinci Construction Grands Projets (VCGP), Egis International
(EGIS) and Louis Dreyfus Armateurs (LDA).

Met-Chem DRA Global (MTC) and AMC Consulting (AMC) were appointed by the FC as their
specialist sub-consultants.

Kore directly contracted with Met-Chem DRA Global (MTC) for the Mineral Resource Estimate
(MRE), and SRK Consulting (UK) Limited (SRK) for undertaking the Environmental and Social Impact
Assessment (ESIA).

Kore further directly engaged Jukes Todd, Hatch and Wood to conduct reviews of the final draft DFS
presented by the FC.

In accordance with JORC 2012, the Competent Persons (CP) for the Kola Project are:

    -   Mr. Kirkham P.Geo of MTC, for the Mineral Resource Estimate (MRE). Mr Kirkham is a
        member of good standing of the Association of Professional Engineers and Geoscientists of
        British Columbia.

    -   Mr. Molavi P.Eng of AMC, for the Reserve Review (RR). Mr Molavi is a member of good
        standing of the Association of Professional Engineers and Geoscientists of British Columbia.

    -   Mr. Larmour P.Eng for the Potash Process Review (PPR). Mr Larmour is a member of good
        standing of the Association of Professional Engineers and Geoscientists of Saskatchewan.

                                                                                                  10
    -   Mr. Cowen, an Independent Consultant, for the Techno-Economic Modelling (TEM). Mr
        Cowen is a member of good standing of the South African Institute of Mining and
        Metallurgy.



Figure 1: Location Map showing Kola Project

A copy of this announcement including the diagrams and schematics referred to in this
announcement are available on the Company’s website at http://www.korepotash.com/wp-
content/uploads/2019/01/Kola-Definitive-Feasibility-Study.pdf


Figure 2: Scope of Project Parties

A copy of this announcement including the diagrams and schematics referred to in this
announcement are available on the Company’s website at http://www.korepotash.com/wp-
content/uploads/2019/01/Kola-Definitive-Feasibility-Study.pdf


2. Sylvinite Mineral Resource

The Mineral Resources at the Kola sylvinite deposit are shown in Table 1 below. The total Measured
and Indicated Mineral Resources are 508 Mt with an average grade of 35.4% KCl and provides the
basis for the Ore Reserve Estimate. Sections 1 to 3 of the JORC 2012 Table 1 Checklist of Assessment
and Reporting Criteria for that Mineral Resource estimate were reported to shareholders on 6 July
2017. The Company confirms there has been no material change to those Mineral Resource since
that date. The Company notes that the Mineral Resources estimates referred to in this section are
inclusive of Mineral Resources that have been modified to produce Ore Reserves.

The Mineral Resources are hosted by four flat or gently dipping (<20 degrees) layers (referred to as
‘seams’) as follows from upper-most; Hanging wall Seam (HWS), Upper Seam (US), Lower Seam (LS),
Footwall Seam (FWS). The Footwall Seam (FWS) hosts Inferred Mineral Resources only and does not
form part of the Mine plan. The HWS, US and LS seams have an average thickness of between 3.3 m
and 4.0 m. The HWS is approximately 60 m above the US. The US and the LS are separated by a
layer of rock-salt (massive halite) typically 2.5-4.5 m thick.

The HWS, US and LS are at a depth of between 190 m and 320 m, hosted within the upper 70 m of a
400 m thick rock-salt dominated evaporite formation which is overlain by a layer of anhydrite and
clay typically 5 m to 15 m thick. The sylvinite has a very low insoluble and magnesium content (both
< than 0.2 %) which provides an advantage for processing. The host-rock of the sylvinite is massive
rock-salt and in some areas the sylvinite is underlain by carnallitite (a rock-type comprised
predominantly of the potash mineral carnallite (KMgCl3 6H2O) and halite. Bischofite, a
geotechnically unstable rock-type, does not occur in proximity to the seams.

The Inferred Mineral Resources are 340 Mt grading 34% KCl, of which the HWS, US and LS hosts 299
Mt (grading 34.8% KCl). Beyond this, the deposit is open laterally in some directions and may
support an expansion of the deposit should additional exploration be undertaken. Two wide-spaced
holes drilled in 2017 support this, the most distant being 5 km southeast of the current Mineral
Resource extent. Both intersected HWS grading over 60% KCl (announcement dated 7 December
2017). An Exploration Target for this area (Kola South) was announced on 20 November 2018.


                                                                                                 11
Table 1 July 2017 Kola Mineral Resources for Sylvinite



July 2017 - Kola Deposit Potash Mineral Resources - SYLVINITE
                                                    Million
                                                                KCl    Mg             Insoluble
                                                    Tonnes
                                                      Mt         %      %                %
                    Measured                          -          -      -                -
Hanging wall        Indicated                       29.6        58.5   0.05             0.16
Seam                Inferred                        18.2        55.1   0.05             0.16
                    Total Mineral Resources         47.8        57.2   0.02             0.16
                    Measured                        153.7       36.7   0.04             0.14
                    Indicated                       169.9       34.6   0.04             0.14
Upper Seam
                    Inferred                        220.7       34.3   0.04             0.15
                    Total Mineral Resources         544.3       35.1   0.04             0.14
                    Measured                        62.0        30.7   0.19             0.12
                    Indicated                       92.5        30.5   0.13             0.13
Lower Seam
                    Inferred                        59.9        30.5   0.08             0.11
                    Total Mineral Resources         214.4       30.6   0.13             0.12
                    Measured                          -          -      -                -
                    Indicated                         -          -      -                -
Footwall Seam
                    Inferred                        41.2        28.5   0.33             1.03
                    Total Mineral Resources         41.2        28.5   0.33             1.03
Total Mineral Resources                             847.7       34.9   0.07             0.13


3. Ore Reserves

The Kola Sylvinite Ore Reserves are 152.4 Mt with average grade of 32.5% KCl. The estimate of Ore
Reserves was completed by Met-Chem DRA Global and was prepared in accordance JORC 2012.

Appendix B contains a summary of information required according to ASX Listing Rule 5.9.1 and
Appendix C contains section 4 of the JORC 2012 Table 1 Checklist of Assessment and Reporting
Criteria.

Details of the Ore Reserve Estimate and is shown in Table 2 below.




                                                                                                  12
 Table 2: Kola Sylvinite Ore Reserves



                                         Ore Reserves
                                                                 KCl                    Mg                Insolubles
        Seam       Classification          Tonnage
                                                                (%KCl)                (%Mg)                (%Insol)
                                             (Mt)
               Proved                         47.3                 33.43              0.08                   0.15
    Upper Seam
     Sylvinite Probable                       58.7                 31.83              0.06                   0.15
               Total                          106.0                32.54              0.07                   0.15
                Proved                        14.5                 27.88              0.20                   0.13
    Lower Seam
      Sylvinite Probable                      23.4                 28.35              0.08                   0.14
                Total                         37.9                 28.17              0.13                   0.14
                  Proved
    Hanging Wall
   Seam Sylvinite Probable                     8.4                 52.09              0.47                   0.19
                  Total                        8.4                 52.09              0.47                   0.19
                 Proved                       61.8                 32.13              0.11                   0.15
                 Probable                     90.6                 32.81              0.10                   0.15
      TOTAL
                 Total Ore                    152.4                32.54              0.10                   0.15
                 Reserves


 All Sylvinite in the Measured and Indicated Resource category was considered for Ore Reserve
 conversion because of the sharp grade boundaries of the Sylvinite seams and the fact that the
 economic Cut- off Grade (CoG) is below the Mineral Resources CoG of 10% KCl.



 Table 3. Kore’s Sylvinite Mineral Resources and Ore Reserves, provided as Gross and Net
 Attributable (reflecting Kore’s future holding of 90% and the RoC government 10%), prepared and
 reported according to the JORC Code, 2012 edition. Table entries are rounded to the appropriate
 significant figure.

KOLA SYLVINITE DEPOSIT
                                                        Gross                                      Net Attributable (90%)
                                                                                                                         Contained
                                    Million                          Contained KCl       Million
Mineral Resource Category                            Grade KCl %                                         Grade KCl %     KCl million
                                    Tonnes                           million tonnes      Tonnes
                                                                                                                          tonnes
Measured                             216                34.9               75                194            34.9             68
Indicated                            292                35.7               104               263            35.7             94
Sub-Total Measured +
                                     508                35.4               180               457            35.4            162
Indicated
Inferred                             340                34.0               116               306            34.0            104
TOTAL                                848                34.8               295               763            34.8            266


                                                        Gross                                      Net Attributable (90%)
                                                                                                                         Contained
                                    Million                          Contained KCl       Million
Ore Reserve Category                                 Grade KCl %                                         Grade KCl %     KCl million
                                    Tonnes                           million tonnes      Tonnes
                                                                                                                          tonnes


                                                                                                                    13
Proven                                62             32.1               20          56               34.9            19
Probable                              91             32.8               30          82               35.7            29
TOTAL                                152             32.5               50          137              35.4            49
Ore Reserves are not in addition to Mineral Resources but are derived from them by the application of modifying factors


DOUGOU EXTENSION SYLVINITE DEPOSIT
                                                     Gross                                  Net Attributable (90%)
                                                                                                                 Contained
                                   Million                      Contained KCl     Million
Mineral Resource Category                        Grade KCl %                                      Grade KCl %    KCl million
                                   Tonnes                       million tonnes    Tonnes
                                                                                                                  tonnes
Measured                               -               -                -            -                 -              -
Indicated                            111             37.2               41          100              34.9            35
Sub-Total Measured +
                                     111             37.2               41          100              34.9            35
Indicated
Inferred                             121             38.9               47          109              34.9            38
TOTAL                                232             38.1               88          209              34.9            73
Note: Table entries are rounded to the appropriate significant figure


 4. Mining

 The Kola orebody is planned to be mined using conventional underground mechanised methods,
 extracting the ore within ‘panels’, using Continuous Miner (CM) machines of the drum-cutting type.
 This is the most widely used method of potash mining world-wide and is considered low-risk. The
 Mine design adopts a relatively typical layout including panels, comprised of rooms and pillars.
 Pillars are the support rock left in place to provide stable ground support during the operation of the
 mine.

 The mine design is based on a minimum mining height of 2.5 m and a single type of CM is available
 which is capable of mining seam heights of between 2.5m and 6m. Each panel is accessed by 4
 entries. Each entry is 8m wide and 3m to 6m high depending on the seam height. The rooms are
 mined in a chevron pattern at an angle of 65 degrees from the middle entry, each with a length of
 approximately 150 m.

 Key geotechnical parameters evaluated in the mine design were:

     -      To mine both the US and LS, the support interval between the seams must be at least 3 m
            thick

     -      Provide an 8 m wide pillar between two consecutive production rooms (of 8 m each)

     -      Provide a 50 m wide pillar between two Production Panels. Similarly, a 50 m wide pillar will
            be left in place between the side of the Production Panel and the Main Haulage Access Drift

     -      Provide a minimum thickness of 10 m to 15 m of the Salt Member between the mine
            openings and the floor of the overlying Anhydrite Member (referred to as the ‘salt back’)

     -      Provide a stand-off distance of 20 m from any exploration holes




                                                                                                            14
    -   Provide a stand-off distance of 30 m from Class 2 geological anomalies and 60 m from Class
        3 geological anomalies

    -   Provide a pillar of 300 m in radius around the Exhaust and Intake Shafts, and

    -   A mining loss of 10% has been applied, which allows for operational losses in material left in
        footwall, pillars and spillages from belts

Mine access is provided by two vertical Shafts, each 7m in diameter. The shafts will be sunk in the
center of the orebody. To provide access to the underground, the Intake Shaft will be equipped with
a hoist and cage system for transportation of persons and material. The Exhaust Shaft will be
equipped with a Pocket Lift conveyor system to continuously convey the mined-out ore to the
surface. Both shafts are approximately 270m deep.

Mining equipment selected for the Kola Project Mine includes a fleet of 6 electrically powered
continuous miners (CMs). Ore haulage from the CMs to the feeder breaker apron feeder will be
done using electrically- powered Shuttle Cars, with a rated payload of 30 t and a 250 m power supply
cable.

Underground conveyor belts will be used for ore transportation in all the areas of the Mine. The belt
conveyors are distributed in the main and submain haulages and ultimately in the working panels
near the CM working face. The ore will be placed on the belts from feeder breakers that are fed by
the Shuttle Cars. Belt conveyors will carry the ore loaded by the feeder breakers to the Ore Bins. The
ore is then conveyed from the Ore Bins to the Pocket Lift system located in the Exhaust Shaft.



5. Life of Project schedule

The project Life-of-Mine (LoM) production schedule, including tonnes of Sylvinite, tonnes of waste,
tonnes of the Muriate of Potash (MoP) product, and the average KCl grade of the Run-Of–Mine
(ROM) material, is summarized in Figure 3

The Life of Ore Reserves for the Kola Project is 23 years, and full-scale production of 2.2 Mt per
annum of MoP occurs for approximately 20 years post commissioning and ramp up. During the
exploitation of Ore Reserves, 9.7 Mt of Inferred Mineral Resources are scheduled to be mined and
processed. This represents approximately 6.0% of the total amount of ROM material processed in
the first 23 years. This portion of the Inferred Mineral Resources is at the periphery of the Mineral
Resources envelope and immediately adjacent to the Ore Reserves and logically would be extracted
in conjunction with the adjacent Ore Reserves. Figure 4 below shows panel sequencing for
extraction of Ore Reserves.



Figure 3 - Life-of-Mine Production Summary of the Kola Mine

A copy of this announcement including the diagrams and schematics referred to in this
announcement are available on the Company’s website at http://www.korepotash.com/wp-
content/uploads/2019/01/Kola-Definitive-Feasibility-Study.pdf
In addition, scheduling a further portion of Inferred Mineral Resources after the full depletion of Ore
Reserves adds an additional 10 years to the project life. The extraction and processing of these
Inferred Mineral Resources has been included in the Life of Project economic evaluation and extends
the evaluated project life to 33 years.

                                                                                                    15
Approximately 27% (79.7Mt) of the total Inferred Mineral Resources (298Mt) have been included in
the economic evaluation. There is a low level of geological confidence associated with inferred
mineral resources and there is no certainty that further exploration work will result in the
determination of indicated mineral resources or that the production target itself will be realized. In
preparing the production target and economic evaluation, each of the modifying factors was
considered and applied and the Company consider there are reasonable grounds for the inclusion of
Inferred Mineral Resources in the production target for the Kola Project.

Due to the lower level of confidence associated with Inferred Mineral Resources, a detailed mine
design and extraction plan was not prepared for the Inferred Mineral Resources considered in the
final 10 years of the economic evaluation. The same underlying operating cost and sustaining capital
assumptions for the first 23 years were applied to the final 10 years of the economic evaluation.

No Exploration Target material has been included in the economic evaluation or production target
for the Kola Project.



Figure 4: Life of Ore Reserves Panel Sequencing

A copy of this announcement including the diagrams and schematics referred to in this
announcement are available on the Company’s website at http://www.korepotash.com/wp-
content/uploads/2019/01/Kola-Definitive-Feasibility-Study.pdf


6. Hydrogeology

During the DFS hydrogeological investigations were carried out to:

    1. Identify sources of fresh water supply for construction and operations.

        These tests concluded that process plant area water supply is available at required rate of
        76m3/hr utilising 3-4 wells at a depth of 170m. Similarly, the required water supply at the
        mine site of 18m3/hr can be supplied via 3 wells sunk to 110m depth. Hydrogeological
        modelling indicates that extraction of these quantities of water over the project life will not
        adversely impact the aquifers and minor drawdown in the aquifers is expected over the life
        of the project.

    2. Understand the risk that aquifer system poses to mining operations and how to mitigate this
       risk.

        The risk of water ingress to the mining areas is a common risk in almost all salt and potash
        mines. These mines are typically overlain by water-bearing sediments. At operating potash
        mines in Canada and Europe, the hydrogeological risk is considered higher in areas of
        disturbance of the stratigraphy, referred to as geological or subsidence anomalies. At Kola, a
        detailed understanding of the aquifers overlying the evaporite rocks, as well as of the
        aquitards (or barriers to water flow), has been developed over a number of years. The
        conclusions drawn following hydrogeological testing were:

            -   A problematic water ingress is considered a low probability as no linear faults have
                been identified and all potential subsidence features can be accurately delineated
                using (proposed 50 m spaced line) 3D seismic surveying, to add to the existing 186
                km of seismic survey data over the Deposit.

                                                                                                    16
            -   No mining or shaft sinking is planned within areas of subsidence. In addition,
                horizontal ‘cover drilling’ and Ground Penetrating Radar (GPR) will be employed as
                forward-looking actions to improve understanding of ground conditions in advance
                of mining and further mitigate the risk of intersecting a structure or area of
                disturbance.

            -   The mine design incorporates a 10-15 m minimum 'salt-back' barrier between the
                mining area and the anhydrite acquitard, effectively reinforcing the anhydrite
                member aquitard layer.

    3. Understand the impacts of groundwater composition and the aquifers on the shaft sinking
       operation.



The results of this testing confirmed:

    -   That ground freezing during shaft sinking will not be impacted by hydraulic flow or high
        salinity in the deep aquifer. In fact, low permeability, and low TDS (and salinity) in both
        aquifers is to be expected, supporting the planned freeze-hole spacing and comparatively
        low energy consumption for the ground freezing operation.

    -   The presence of a thick Anhydrite Member (12 m) overlying the salt member which acts as
        an aquitard and reduces risk of water inflow into the salt member.



7. Metallurgy and Process

Ore from underground is transported to the process plant via an overland conveyor approximately
35 kilometres long.

During the DFS an overland conveyor was selected in preference to trucking of ore as a lower
operating cost solution that would have reduced environmental impacts.

A conventional potash flotation plant has been designed for the Kola Project. This is the optimum
processing method and this decision is based on test work, projected mining grades and simulations
and mass balance of the process. As a result of the low insolubles content, no separate process
circuit is required to remove insolubles.

A schematic of the full process to extract ore and produce MoP product is shown in Figure 5



Figure 5: Process flow from mine to ship

A copy of this announcement including the diagrams and schematics referred to in this
announcement are available on the Company’s website at http://www.korepotash.com/wp-
content/uploads/2019/01/Kola-Definitive-Feasibility-Study.pdf


The design strategy adopted delivers a Process Plant designed to produce 2.2 Mtpa of MoP at a KCl
grade of 95%w and that will accommodate the variety of ROM feedstock characteristics expected to
be encountered during the Life of the project.


                                                                                                17
Metallurgical testing was undertaken in 2017 and 2018 to confirm the flotation performance of the
Ores and to allow design of the flotation process flowsheet.

Characterisation tests were performed on pure seam samples (USS, LSS and HWS) expected to be
mined as part of the mine schedule. Composite samples of multiple seams, prepared to be as
representative as possible of the expected range of Run of Mine Ore characteristics foreseen in the
mine schedule, were prepared from the seam samples.

The insoluble content of the samples was less than 0.5%w and close to 0.1%w in the composite from
the USS and LSS. The characterisation of both the composite samples and the pure seam samples
established that the KCl content in the composite was 32.2%w.

The DFS process plant KCl recovery has been established as 91.9% of KCl and this recovery has been
used in the economic evaluation. In addition, the review of the process test work has identified an
opportunity to further improve KCl recovery by 0.9% through improved fines management. This
potential improvement has not been included in the economic evaluation.

The overall recovery of KCl is sensitive to the proportion of fines in the feed. The DFS has adopted a
conservative approach and selected a particle size distribution that contains a conservatively high
proportion of fine KCl in the flotation feed. This exaggerates the quantity of material directed to the
Scavenger Flotation circuit for fines flotation, which has much lower effectiveness than coarse
flotation. During the review of the DFS, Kore’s consultants have advised that normal management of
fines in the flotation feed will further enhance recovery of KCl.



8. Marine Facilities

A transshipment arrangement has been designed whereby MoP for export is loaded from a
dedicated Jetty into self-propelled shuttle Barges (two units), which then travel to the Ocean-Going
Vessels (OGVs) anchored 11 nautical miles (20 km) offshore at a dedicated transshipment zone. The
MoP is transferred from the Barges to the OGVs using a Floating Crane Transhipper Unit (FCTU).

During the DFS transhipping was selected over direct ship loading from the export jetty. The ocean
depth along the coastline is shallow and it was not considered feasible to construct the length of
jetty required to facilitate direct shiploading.

To ensure sufficient year-round operational availability of the Jetty, a 210 m long steel combi-wall
breakwater structure has been designed to shelter the berthing area for Barge loading operations.

The Jetty has been widened to accommodate both a Seawater Intake (SWI) and a Seawater Outfall
(SWO) systems.

The Seawater Outfall (SWO) Diffuser head will be located on the seabed, 490 m from the point
where the SWO pipe leaves the Jetty structure. The submerged SWO pipe will be positioned on the
seabed and ballasted. The SWO Diffuser head will be confined in a 150 m radius exclusion zone to
prevent unauthorized vessels from approaching the SWO Diffuser.




                                                                                                    18
9. Residue and Brine Disposal

The Kola Project’s process residue is combined into a single waste stream composed of the NaCl (the
brine from product and salt de-brining – bulk of the effluent) and the residue tails stream which
originates from the insoluble de-brining circuit within the Process Plant. The effluent is collected in
onshore dissolution/dilution tanks and then discharged at sea via the SWO pipe and diffuser. The
effluent discharge dispersion characteristics comply with the applicable environmental criteria.

Ecotoxicological test work of the expected discharge effluent confirms that the discharge at sea of
the combined salt and insoluble tails stream does not place undue stress on the marine
environment.

No onshore tails storage facility is therefore required for the Kola Project.



10. General Infrastructure

A schematic of the Kola project infrastructure is illustrated in Fig 6 below.



Figure 6: Kola Project Configuration

A copy of this announcement including the diagrams and schematics referred to in this
announcement are available on the Company’s website at http://www.korepotash.com/wp-
content/uploads/2019/01/Kola-Definitive-Feasibility-Study.pdf


        a. Mine Site – Infrastructure

        The Mine Site is located 33 km north and inland of the Project Process Plant Site which is
        near the village of Koutou and the current KP2 Exploration Camp.

        The site can be accessed from Pointe Noire on the existing National Highway “Routes
        Nationales” RN5 and RN6, via Madingo Kayes.

        The Mine Site surface facilities and infrastructure provides access and support facilities for
        the Underground Mining operations.

        No permanent living accommodation is planned at the Mine Site for the Operational phase
        of the Project.

        b. Process Plant Site - Infrastructure

        The Process Plant Site is located on gentle sloping ground next to the coast, approximately
        60 km north west of Pointe Noire.

        The Process Plant Site facilities and infrastructure produces Muriate of Potash (MoP) in
        granular and standard form by processing Run of Mine (ROM) ore, transferred from the
        Mine Site via the Overland Long Conveyor (OLC), for export via the adjacent Marine
        Facilities. The main administration, control and support functions (Maintenance, Storage,
        Logistics, Training, etc.) are also located within the Process Plant Site.




                                                                                                    19
       c. Mining Complex & Off-Site - Infrastructure

       The operation of the Kola Project’s Mine and Process Plant sites are supported by ancillary
       sites (Accommodation Camp and Solid Waste Management Centre) and interconnecting
       infrastructures (Roads, Power, Water and Gas supply, and Communications).

       The permanent accommodation camp will be located approximately 1.8 km from the
       Process Plant and will accommodate up to 850 people.

       Electrical power will be sourced from the RoC national grid. A 59 km long 220 kV
       transmission line will be built from the Mongo Kamba II substation north of Pointe Noire to
       the Process Plant. The power demand is estimated to be 25 MVA at the Mine Site and 50
       MVA at the Process Plant.

       The natural gas needed for product drying will be supplied by a 75 km long pipeline from the
       M’Boundi gas treatment plant.

       Memoranda of Understanding for the supply of electrical power and gas are in place with
       the intended suppliers. Supply contracts are planned to be formalized prior to the final
       investment decision for the project.

       Raw water will be supplied from wells located at the Mine Site (3 wells) and at the
       Accommodation Camp (4 wells).



11. Environmental and Social Impact Assessment (ESIA)

To comply with RoC permitting requirements, an updated ESIA has been undertaken for the Kola
Project. During 2012 and ESIA for the project (known then as Sintoukola) was completed. This ESIA
was approved by the Ministry of Tourism and Environment (MTE) in August 2013. During the PFS
and the DFS phases a number of changes were made to the project design, triggering the
requirement for the updated ESIA.

In addition to complying with the RoC’s national laws and regulations, the ESIA process was aligned
with Good International Industry Practice (GIIP) guidelines, the IFC’s Performance Standards and the
Equator Principles.

The ESIA was managed by SRK Consulting (UK) Limited’s environmental and social (E&S) team. SRK
partnered with “Cabinet Management & Etudes Environnementales S.A.R.L.” (CM2E), which acted as
the Congolese-registered consultancy.

ESIA-related stakeholder engagement included a “public enquiry” held in April 2017, “public
hearings”                                           held                                       in
July 2018 (feedback consultations on the draft ESIA, undertaken with communities, government and
non-government organisations (NGOs)) and issue-specific consultations (for example, the
underpasses below the conveyor were discussed with affected communities, while conservation
NGOs were engaged on the minimization of impacts on marine turtles and mammals).

A Conceptual Rehabilitation and Closure Plan has been prepared by SRK (as part of the ESIA) in
accordance with GIIP and incorporating the regulatory requirements in the RoC’s Mining Code. The
DFS includes a cost estimate to successfully implement the closure actions required by the plan.



                                                                                                 20
The Environmental and Social Management Plan (ESMP), which is currently under development, will
identify measures required to minimise and appropriately mitigate impacts. During the project
design phase consideration has been given to all ESIA findings and recommendations.

The Kola Project will contribute positively to the diversification of the national economy, which is a
key goal of the Government of the RoC, will provide an alternative livelihood to residents in the area
and contribute to the sustainable management of the endangered species found in the project area.



12. Potash Marketing

Kore’s potash marketing strategy recognises the supply opportunities arising from MoP market
growth in Brazil, the project’s proximity to Brazil and African markets and the cost competitiveness
of the Kola Project. The DFS demonstrates that the Kola project can deliver MoP into Brazilian and
ports on the west coast of Africa at lower cost than all other international suppliers.

The design of the processing plant allows Kore to produce red MOPG (Muriate of Potash - Granular)
for the Brazil market and retain flexibility to produce both white MOPG and white MOPS (Muriate of
Potash - Standard) to pursue higher potential netbacks in other markets.

The international competitiveness of the Kola Project was benchmarked by CRU against other
producers and projects using data from CRU’s Potash Cost Model, with results as follows:

    -   An ex-works operating cost of US$83.25/t (real 2018) means the Kola Project will operate as
        the fourth lowest producer at the beginning of the second quartile of CRU’s global ex-works
        (EXW) cost curve.

    -   The Kola Project’s proximity to the ocean significantly strengthens its competitiveness on an
        export (FOB) cost basis. The DFS estimates the export (FOB) cost at US$87.63/t (real 2018)
        which includes transshipment costs.

    -   On an export cost (FOB) basis, the Kola Project would rank as the second lowest cost
        operation when compared to existing producers as well as ‘committed’ projects.

    -   CFR Brazil costs of US$102.47 (real 2018) would rank Kola as the lowest cost supplier to
        Brazil, with a potentially disruptive capability to compete on price.



13. Capital and Operating Costs

        a. Capital Cost

        The pre-production Capital Cost for the Kola Project is estimated at US$2,103m, which
        includes US$110m of Contingency, US$106m of Escalation and US$89m EPCM margin.

        The Capital Cost Estimates, expressed in US dollars, have been developed for each work
        breakdown area, and are based on July 2018 prices. The Capital Cost Estimates are based on
        Erected Quantities (which include Design Growth Allowances) determined by complete
        Material Take-Offs and the application of unit rates.

        Written quotations from preferred suppliers have been received for 82.0% of the Main
        Equipment.


                                                                                                   21
             For the DFS, Capital Costs have been grouped into Initial, Deferred and Sustaining Capital
             Costs.

                 -    Initial Capital Costs: all costs incurred up to the completion of First Barge Load
                      milestone.

                 -    Deferred Capital Costs: all capital costs incurred from First Barge Load completion up
                      to the Nominal production rate (Mine Steady State + 3 months of stabilized full
                      production) achievement milestone.

                 -    Sustaining Capital Costs: all capital costs incurred after this last milestone. They
                      represent the costs of investments to be carried out to maintain nominal production
                      capacity over the years.

                 -    Capital Costs (Initial and Deferred) are summarized in Table 4.


 Table 4 - Summary of Reviewed Capital Costs



                                                                                               Initial plus Deferred
                                                    Initial Capex      Deferred Capex
Description                                                                                                    Capex
                                                           (kUSD)              (kUSD)
                                                                                                              (kUSD)
Mine Area                                               345,934                65,976                      411,910
Process Area                                            494,597                 3,070                      497,667
Tailings Disposal                                             -                    -                             -
Roads                                                     62,877                     -                      62,877
Marine Facilities                                       179,176                      -                     179,176
General Infrastructures                                 309,484                      -                     309,484
Sub-Total Direct Costs                                 1,392,068               69,046                    1,461,114
Construction Supervision                                  79,292                   77                       79,369
Pre-Comm. / Comm- /Start-up Supervision                   33,434                    9                       33,443
Home Office Services                                    164,397                      -                     164,397
Miscellaneous                                             10,388                     -                      10,388
Sub-Total Services & Misc.                              287,511                    86                      287,597
Sub-Total Technical Cost                               1,679,579               69,132                    1,748,711
Owner's Costs                                           118,844                      -                     118,844
Escalation                                              106,293                 2,947                      109,240
Contingency                                             109,554                 4,325                      113,879
EPCM margin                                               88,907                     -                      88,907
Total Capital Costs                                    2,103,177               76,404                    2,179,581


             The pre-production capital cost of US$2,103 million equates to a pre-production capital
             intensity of US$956/t MoP annual capacity. This is in the second quartile (as illustrated in Fig.
             7) relative to MoP industry peers and suggests further capital optimisation is possible.




                                                                                                            22
 Figure 7 – MoP Project Capital Cost Curve (CRU report Aug 2018)

 A copy of this announcement including the diagrams and schematics referred to in this
 announcement are available on the Company’s website at http://www.korepotash.com/wp-
 content/uploads/2019/01/Kola-Definitive-Feasibility-Study.pdf


          Sustaining capital costs cover expenditures required to ensure the operation can sustain the
          production at nameplate capacity. These costs include overhaul parts and labour,
          replacement of equipment, maintenance of infrastructures (road, jetty etc), shut down
          costs, additional continuous miner and additional underground conveyor costs, and the
          inspection and maintenance of the transshipment vessels.

          The Sustaining Capital Costs are summarized in Table 5.



 Table 5 – Summary of Sustaining Capital



Description                                      US$/t MoP                              %
UG Mining                                            3.99                              36%
AG Mining                                            0.52                               5%
Overland Conveyor                                    0.61                               6%
Processing – Crushing                                0.62                               6%
Processing – Flotation                               0.63                               6%
Processing – Dewatering                              0.34                               3%
Processing - Tailings                                0.15                               1%
Processing – Finishing                               1.30                              12%
Processing - Storage/Loadout                         0.26                               2%
Processing – Infrastructure                          0.56                               5%
General Infrastructure                               1.58                              14%
Transshipment                                        0.42                               4%
Total Sustaining Capital costs                      10.98                              100%


          b. Operating Cost

          The DFS confirms that the Operating Cost of the Kola Project is highly competitive and
          potentially disruptive to all existing suppliers into Brazil and the west coast of Africa. The
          mine gate operating cost is estimated at US$61.71/t and the export (FOB) cost is estimated
          at US$87.63/t. This ranks the Kola Project as the second lowest cost operation when
          compared to existing producers as well as ‘committed’ projects. The estimated landed cost
          to Brazil (CFR) at US$102.47/t would rank the Kola Project as the lowest cost supplier to
          Brazil.

          The Operating Costs are expressed in US dollars on a real 2018 basis and are based on
          average annual production of 2.20Mtpa of MoP over the life of mine. All costs have been
          prepared on an owner operated basis and are shown in Table 6.



                                                                                                     23
 Table 6 - Summary of Operating Costs



                                                                                         Real 2018 costs
Cost Category
                                                                                           (US$/t MoP)
Opex
Mining Cost                                                                                       21.70
Process Cost                                                                                      25.77
General Infrastructure costs                                                                       4.57
Owners Costs                                                                                       9.67
Mine Gate Operating Costs                                                                         61.71
Sustaining Capex                                                                                  10.98
Product Realisation Charges and Allowances                                                         1.89
Royalties                                                                                          8.67
Ex Works Cost                                                                                     83.25
Logistics to FOB point                                                                             4.37
Ocean Shipping                                                                                    14.84
CFR Cost (Landed in Brazil)                                                                      102.47


 Figure 8: Global Potash Export Cost Curve (FOB) (CRU Cost Curves August 2018) (US$/t MoP
 (2022))

 A copy of this announcement including the diagrams and schematics referred to in this
 announcement are available on the Company’s website at http://www.korepotash.com/wp-
 content/uploads/2019/01/Kola-Definitive-Feasibility-Study.pdf


 Figure 9: Brazil Potash Delivered Cost Curve (CFR Brazil) (CRU Cost Curves August 2018) (US$/t
 MoP (2022))

 A copy of this announcement including the diagrams and schematics referred to in this
 announcement are available on the Company’s website at http://www.korepotash.com/wp-
 content/uploads/2019/01/Kola-Definitive-Feasibility-Study.pdf


 14. Project Optimisation

 During the review of the DFS by Kore staff and a team of international and industry leading
 consultants including Hatch, Wood and JukesTodd, various opportunities have been identified to
 further improve or optimise the Kola Project.

 Hatch were engaged to assess the process design and modelling of the plant and requested to
 identify opportunities to improve the design and optimise the output based on a process model and
 industry norms. The results of their investigation were addressed in a detailed report on potential
 design changes based on their reasonable judgement and probable outcomes of the process model.
 The report detailed the potential to improve recovery by 0.9% and the list of areas that should be
 further investigated to potentially optimise the process design. This 0.9% recovery improvement has
 not been included in the base case project and economic evaluation.


                                                                                                  24
JukesTodd were approached to assess the proposed construction schedule and the overall design
from a perspective of optimising engineering to achieve the best capital efficiency. Opportunities
were identified to reduce the construction schedule by 6 months along with opportunities to reduce
capital costs through design changes to a value of between US$80 million and US$331 million on
direct capital costs only. A further saving on indirect capital costs of between US$19 million and
US$167 million was also identified. Higher than industry standard services and miscellaneous costs
were also observed. The economic evaluation of the project does not incorporate any of these
identified improvement opportunities.

Wood were engaged to undertake a comparative assessment of the Kola Project against equivalent
potash projects executed and built in Canada. Their review found that the project site manhours
were higher than comparable projects and the engineering and procurement components of “Home
Office Services” capital costs which are higher than the expected norms for a project of this nature.
This report affirms and strengthens the potential to achieve the savings identified in the Jukes Todd
report. The economic evaluation of the project does not incorporate this improvement opportunity.



15. Economic Evaluation

        a. Summary Economics

        The economic evaluation delivers a post-tax, NPV10 (real) of US$1,452M and a real
        ungeared IRR of 17% on an attributable basis, the evaluation is based on a granular MoP
        price of US$360/t MoP CFR Brazil (real 2018) which represents the current CFR Brazil spot
        price and a standard MoP price of US$350/t CFR Brazil, which is well under the CRU forecast
        long term marginal cost of supply to Brazil. (US$447/t MoP).

        The key assumptions underpinning the economic evaluation are as follows:

            -   23-year initial project life from first production based on depletion of Ore Reserves;

            -   Subsequently an additional 10 years project life based on exploitation of a portion of
                the Inferred Mineral Resources

            -   2.20 Mtpa average production of MoP;

            -   Granulated MoP represents approximately 86% of total MoP production and sales;

            -   All cashflows are on a real 2018 basis

            -   NPVs are ungeared and calculated after-tax applying a real discount rate of 10%
                (based on a review of 7 recent potash projects, 4 of which were in Africa and
                discussions with the Company’s financial advisor a 10% discount rate was selected )

            -   NPVs are calculated at a base date of mid-2019 prior to the potential dates for
                commencement of project construction

            -   Average MoP price of US$360/t MoP CFR Brazil (real 2018) for granular product
                (based on recent potash price movements, current market prices, a review of recent
                releases by Potash producers and potash development companies and potash
                market research from CRU);

        Fiscal regime assumptions aligned with the recently finalised Mining Convention:


                                                                                                    25
            -   Corporate tax of 15% of taxable profit with concessions for the first 10 years of
                production (0% for the first 5 years and 7.5% for years 6 – 10);

            -   Mining royalty of 3% of the Ex-Mine Market Value (defined as the value of the
                Product (determined by the export market price obtained for the Product when
                sold) less the cost of all Mining and Processing Operations including depreciation, all
                costs of Transport (including any demurrage), and all insurance costs);

            -   Exemption from withholding taxes during the term of the Mining Convention;

            -   Exemption from VAT and import duty during construction; and

            -   Government receives a 10% free carried equity interest in the Kola Project company
                until the initial construction phase is completed.

        The forecast project cash flow for 33 years of production is illustrated in Figure 10.



Figure 10 – Project Cash Flow Forecast (real 2018)

A copy of this announcement including the diagrams and schematics referred to in this
announcement are available on the Company’s website at http://www.korepotash.com/wp-
content/uploads/2019/01/Kola-Definitive-Feasibility-Study.pdf


        b. Sensitivity Analysis

        The DFS economic evaluation demonstrates that the project economics are most sensitive to
        potash price and to project capital costs. Each percentage movement in Price has an
        approximate US$40M movement in NPV10, and each percentage movement in Project
        Capital has an approximate US$15 M impact on NPV10.

        Sensitivity of the NPV to key input assumptions, on a -20%/+20% range is illustrated in
        Figure 11.



Figure 11 - NPV10 Sensitivity to key inputs

A copy of this announcement including the diagrams and schematics referred to in this
announcement are available on the Company’s website at http://www.korepotash.com/wp-
content/uploads/2019/01/Kola-Definitive-Feasibility-Study.pdf


        c. Price Sensitivity

        Table 7 below shows the sensitivity of the project NPV to Potash Price.



Table 7: Sensitivity to potash price

Granular MoP (US$/t         NPV (US$ million)
    CFR Brazil)
        300                       752


                                                                                                    26
          320                       986
          340                      1,219
          360                      1,452
          380                      1,684
          400                      1,917
          420                      2,149


         d. Funding Sensitivity

         The Company’s financial advisors, Rothschild, have undertaken an assessment of the debt
         carrying capacity of the project. Rothschild’s advice is that the project financials support
         debt financing of between US$1.0 billion and US$1.4 billion. The project’s high operating
         margin and high free cash flow on invested capital have a strong influence on the ability of
         the project to support a high gearing. The sensitivity of the project NPV and IRR to the level
         of debt that could be potentially obtained is illustrated in Table 8 below.



 Table 8: NPV10 and IRR sensitivity to debt financing

  Project Debt (US$ million)           NPV (US$ million)                 IRR
              0                             1,452                       17.2%
            1,000                           1,588                       20.1%
            1,400                           1,643                       22.1%


         e. Potential impact of Improvement Opportunities Identified in Review of the DFS

         During Kore’s review of the DFS using industry leading consultants a number of
         improvement opportunities have been identified. The potential impacts of the most
         significant of these opportunities are presented in Table 9.



 Table 9: Influence of potential improvements on economic evaluation



                                                                    Impact on Economic Evaluation
                   Potential Improvement                            IRR                  NPV10
                                                                     %                    US$

1. Improve KCl recovery by 0.9%                                   +0.17%                 + $39M

2. Reduce construction schedule by 6 months                       +0.99%                +$135M

3. Reduce technical capex by US$117M                              +0.90%                +$105M


 16. Project Ownership and transfer of 10% to the RoC Government

 The Kola Mining License is held by Kola Potash Mining SA, a 100% owned subsidiary of SPSA. In turn,
 SPSA is owned by the Kore Group (97%) and a RoC entity (Les Etablissements Congolais MGM) (3%).
 An existing Share Purchase Agreement enables Kore to purchase the remaining 3% of the shares in
 SPSA, with Kore shares to form the consideration.


                                                                                                    27
 In accordance with the Mining Convention, the RoC Government will be transferred 10% of the
 shares in Kola Potash Mining SA.

 The Share Purchase Agreement provides for Kore to become the 100% owner of SPSA in advance of
 transferring the 10% interest in Kola Potash Mining S.A. to the RoC Government.



 17. Next Steps

 The French Consortium (FC), who undertook the DFS, are contracted to deliver an Engineering,
 Procurement and Construction (EPC) proposal to Kore within 3 months of the DFS completion . The
 FC have advised Kore that they expect to provide an EPC proposal to Kore within this quarter.

 Upon receipt of an EPC proposal, the existing contract between the parties provides two months for
 Kore and the FC to potentially reach an agreement on an EPC contract or Kore may exercise a right
 to seek competitive EPC binding proposals from European companies.

 The Company continues its engagement with consultants and technical experts with a view to
 further optimising the project.

 The DFS was delivered to Kore for review by the FC later than contracted, and the review of the DFS
 by consultants engaged by Kore indicates that the project design and capital cost can be further
 improved to reduce the capital cost. As a result, Kore has in accordance with the contractual terms,
 issued notices of deficiency to the FC seeking to address these matters.

 The company will continue to work with the RoC Government to conclude the approval of the
 amended ESIA, while noting all other conventions, permits and rights to operate are in place.

 The Mining Convention requires transfer to the RoC Government of 10% of the shares in the local
 company that holds the Kola mining licence. The process to effect this transfer has not yet been
 clarified and Kore will progress this with the Government.

 The Company and its financial advisors will continue discussion with potential financiers to further
 the financing of the project.



 18. Risks

 Key project and technical risks identified to the project’s valuation and viability include, but are not
 limited to, those outlined in Table 10.



 Table 10: Summary of Key Risks

Key risks to achieving the outcome forecast for the Kola project
Ability to secure project funding
Global potash price change
Material changes to either capital or operational costs
Development of market and sales agreements for MoP
Geotechnical and geological design parameters not accurately predicting rock mass conditions
and nature of orebody
Hydrogeological design parameters do not adequately control water influx
Proportions of Inferred Mineral Resources that convert to Ore Reserve

                                                                                                      28
Conversion of MoUs for energy supply (electricity and gas) into commercial contracts.
RoC political risk
RoC government dispute sections of the Mining Convention
Changing community or local government expectations
Exchange rates


 19. Permit progress

 The Kola project has the majority of permits and agreements in place to facilitate commencement of
 construction and operations. Only the approval of the amended ESIA is currently outstanding.

     -    The Mining Convention was gazetted into law on 7 December 2018

     -    The Maritime Authorisation approved by the Minister of Transport, Civil Aviation and
          Merchant Marine of the Republic of Congo was issued to the Company on 6 September
          2018. The Authorisation covers the Kola, Dougou and Dougou Extension projects, is valid for
          twenty-five (25) years and renewable for the life of projects.

     -    The amended Environmental and Social Impact Assessment was submitted to the regulator
          for approval in Quarter 4 2018 and the Company currently awaits feedback from the
          regulator.



 20. Project Funding

 The Directors of Kore have formed the view that there is a reasonable basis to believe that requisite
 future debt and equity funding for development of the Kola Project will be available when required.
 Kore shareholders should be aware of the risk that future funding for development of the Kola
 Project is likely to dilute their ownership of the Company or Kore’s economic interest in the Kola
 Project.

 There are a number of grounds on which this reasonable basis is held:

     -    Kore has two large strategic shareholders on its register: (i) SQM (18%): a Chilean company
          with a market capitalisation in excess of US$11B that is an integrated producer and
          distributor of specialty plant nutrients, including having an established business in the global
          potash market; and (ii) SGRF (19%): the sovereign wealth fund of Oman, which holds a range
          of natural resource investments, including on the African continent. These two groups
          invested a total of US$40 million into Kore in late 2016. They collectively bring a
          considerable and highly relevant combination of substantial financial capacity, specific
          potash experience, Latin American, Middle Eastern and African influence, and financing
          expertise.

     -    The Kola Project DFS has been completed by a team of world-class project engineers and
          project managers, led by Vinci Construction Group, Technip France S.A., Egis Group and
          Louis Dreyfus Armateurs (the French Consortium). The DFS is comprehensive and inclusive
          of pre-engineering works. This level of definition in the study work is expected to provide a
          significant level of comfort for potential debt and equity project financiers of Kola.

     -    The French Consortium has contracted to provide Kore with an open-book, fixed price,
          binding EPC contract within three months of completion of the Kola DFS. This level of
          commitment from the French Consortium has the potential to significantly de-risk the

                                                                                                       29
    construction phase for Kola. As such it is expected to provide a further level of comfort for
    potential debt and equity project financiers of Kola.

-   The technical and financial parameters detailed in the Kola Project DFS are highly robust and
    economically attractive. Ongoing optimisation of the DFS parameters is expected to further
    improve the forecast DFS financial returns. Collectively, these elements are expected to
    enable the Kola Project to carry a significant level of gearing, thereby considerably reducing
    any required equity funding component to fund development. Rothschild has assessed the
    project and the economic evaluation to assess the level of debt funding that they believe the
    project will support and a range of between US$1.0 and 1.4 billion has been identified as a
    realistic target.

-   Kore is in advanced project finance discussions with a range of different global financiers,
    including many with considerable experience in funding bulk commodity projects and
    projects located on the African continent. Release of the Kola DFS also now provides a
    platform for Kore to advance these discussions with potential debt providers and equity
    investors.

-   SQM and SGRF hold a right of first refusal to product offtake from Kola proportionate to
    their shareholding interest (with each having a floor of 20% of production). The residual
    60% remains uncontracted and therefore a considerable attraction to other potential
    strategic financiers of the Kola Project. In this respect, Kore has held, and continues to hold,
    discussions with respect to possible offtake and project funding/ownership via additional
    strategic partners.

-   As the future 90% owner of the Kola Potash Project, Kore’s options for raising the required
    equity funding will include selling down part of its interest in the Kola Potash Project to a
    third party to form a joint venture. Introduction of a joint venture partner may also provide
    further comfort for potential debt project financiers and could reduce Kore’s share of the
    equity funding requirements for the project. Kore shareholders should be aware that any
    sale of a joint venture interest in the project to a third party would most likely dilute Kore’s
    economic ownership of the project.

-   The Kore Board and management team is highly experienced in the broader resources
    industry. They have played leading roles previously in the exploration and development of
    several large and diverse mining projects in Africa. In this regard, key Kore personnel have a
    demonstrated track record of success in identifying, acquiring, defining, funding, developing
    and operating quality mineral assets of significant scale.

-   Funding for Kola Project pre-production and initial working capital is not expected to be
    required until post conclusion of an EPC agreement and detailed engineering design. These
    items may be completed within 2019 unless Kore exercises its right to seek a competitive
    EPC proposal in which case this timeline may extend by up to 12 months. Kore has
    reasonable grounds to believe that obtaining requisite funding within this timeline is
    achievable.




                                                                                                 30
                                      APPENDIX B
                     Summary of Information required under ASX
Appendix B: Summary of Information required under ASX Listing Rule 5.9.1(in relation to Ore
Reserves), Listing Rule 5.16.1 (production target) and Listing Rule 15.7.1 (forecast financial
information).



Kola Project Ore Reserves and related production target and forecast financial information

Pursuant to Listing Rules 5.9.1, 5.16.1 and 15.7.1, and in addition to the information contained in the
body of this release and in Appendix C below, the Company provides the following summary
information. The assessment of the modifying factors to prepare the Ore Reserves Statement
occurred as the DFS was being finalised, with the production target and forecast financial
information based on the information contained in the finalised DFS described in this report.
Differences between the material assumptions for the Ore Reserve Statement and the production
target and financial forecast (referred to below) are attributable to: (i) improvements in the material
assumptions in the course of finalising the DFS; and (ii) the inclusion of Inferred Mineral Resources in
the production target and forecast financial information (which supports LoM of 33 years at nominal
2.2Mtpa MoP production).



Summary of Material Assumptions – Ore Reserves

The material assumptions relating to the Ore Reserve Statement, for the Kola Project are
summarised below:

    -   Production life (p37, Appendix C, p46 and p51)- LoM of the Ore Reserves 27 years at nominal
        2 Mtpa MoP production, average 1.9 Mtpa MoP production, this was determined during the
        execution of the DFS and from an aligned production schedule for both mining and
        processing.

    -   Product Type (p37, Appendix C, p46, p47 and p50) - process design was based on two MoP
        product types– Granular (86% of production) and Standard (14% of production). The
        marketed MoP will comprise at least 95% KCl, with a maximum of 0.2% Mg and 0.3%
        Insolubles.

    -   Product pricing (p35, Appendix C, p51) - MoP prices were based on forecasts from CRU and
        Integer consulting. The Base Case sales price is forecast to increase at a compound annual
        real growth rate of 2.3% per annum from USD260/tonne in 2023 to USD380/tonne in 2040
        when equilibrium pricing is forecast by CRU to be reached. The average CIF sales price over
        the LoM is forecast at USD341 per tonne of MoP.

    -   Operating cost (p35, p38 and Appendix C, p49, p50 and p51) - on-mine LoM average
        operating cost USD63/MoP t, real was calculated from first principles in the DFS


                                                                                                     31
    -   Shipping costs (Appendix C, p51) - LoM Shipping costs (trans-shipment and sea freight) of
        USD19/MoP t was based on information and estimates from both LDA and CRU.

    -   Project durations – A project capital period 48 months was estimated in the DFS and the
        deferred capital period defined 25 months, with sustaining capital estimated in the DFS as
        299 months

    -   Project Capital (Appendix C, p51) – A total nominal Project Capital of USD2.1 billion
        (including EPCM costs and mark-up) was estimated in the DFS

    -   Fiscal parameters (p40, Appendix C, p51 and p52) – The signed mining convention
        determined the relevant fiscal parameters as summarised below;

            -     Company tax rate (15%),

            -     Tax holidays (5 years at 0% + 5 years at 7.5%)

            -     Royalties (3%) (Mining Convention)

            -     Government free carry (10%) (Mining Convention)

            -     Other minor duties and taxes (Mining Convention)

    -   Working capital (Appendix C, p52) –Working capital based on 30 days Debtors and Creditors,
        60 days Stores advised by Kore.



Summary of Material Assumptions – production target and forecast financial information

The material assumptions relating to the production target and forecast financial information for the
Kola Project which vary from the assumptions relating to the Ore Reserve Statement described
above are summarised below:

                - Production life (p14 and p15) - LoM of 33 years at nominal 2.2 Mtpa MoP
                   production, this was determined following the receipt of the DFS and the inclusion
                   of Inferred Mineral Resource in the production target.

                - Product pricing (p26) - Average MoP price of US$360/t MoP CFR Brazil (real 2018)
                   for granular product (based on recent potash price movements, current market
                   prices, a review of recent releases by Potash producers and potash development
                   companies and potash market research from CRU).

                - Operating cost (p24) - mine gate operating cost is estimated at US$61.71/t and the
                   export (FOB) cost is estimated at US$87.63/t.



Criteria for Mineral Resource and Ore Reserve Classification

The Ore Reserve estimate is based on the Indicated and Measured Mineral Resource estimate for
sylvinite carried out by Met-Chem DRA and reported in accordance with the JORC Code (2012
edition), announced by the Company on 6 July 2017.

Drill-hole and seismic data are relied upon in the geological modelling and grade estimation. Across
the deposit the reliability of the geological and grade data is high. Grade continuity is less reliant on

                                                                                                      32
 data spacing as within each domain grade variation is small reflecting the continuity of the
 depositional environment and ‘all or nothing’ style of Sylvinite formation.

 It is the data spacing that is the principal consideration as it determines the confidence in the
 interpretation of the seam continuity and therefore confidence and classification; the further away
 from seismic and drill-hole data the lower the confidence in the Mineral Resource classification. In
 the assigning confidence category, all relevant factors were considered, and the final assignment
 reflects the Competent Persons view of the deposit.



 Table 1: Summary of Criteria used for the Classification of the Kola Mineral Resource



            Drill-hole required   Seismic data required              Classification extent
Measured    Average of 1 km       Within area of close spaced        Not beyond the seismic
            spacing               2010/2011 seismic data (100 –      requirement
                                  200 m spacing)
Indicated   1-1.5 km spacing      1 to 2.5 km spaced 2010/2011       Maximum of 1.5 km
                                  seismic data and 1 to 2 km         beyond the seismic data
                                  spaced oil industry seismic data   requirement if sufficient
                                                                     drill-hole support
Inferred    Few holes, none       1-3 km spaced oil industry         Seismic data required
            more than 2 km        seismic data                       and maximum of 3.5 km
            from another                                             from drill-holes


 The Measured and Indicated Mineral Resources for sylvinite are hosted by 3 layers (or ‘seams’)
 which are as follows from uppermost; the Hanging Wall Seam (HWS), the Upper Seam (US) and the
 Lower Seam (LS), each separated by rock-salt (a rock-type typically comprised of >95% halite).

 Magnesium and insoluble content are considered deleterious but are present in only very small
 amounts in the ore (average of 0.07% and 0.14%respectively).

 The Mineral Resource Estimate was delivered to the Ore Reserve consultants in the form of a
 standard block model, blocks having dimensions 250 x 250 x 1 m, each block having a KCl grade, a
 density, and magnesium and insoluble content.

 The Mineral Resources are inclusive of the Ore Reserves i.e. the Ore Reserves are the mineable part
 of the Mineral Resources after the application of technical, economic and other modifying factors.

 Areas of potential structural disturbance, referred to as geological anomalies were excluded from
 the Measured and Indicated Mineral Resource. They were identified from seismic data as is standard
 in potash mining districts elsewhere.

 A 10% cut-off grade (CoG) was used in the Mineral Resource Estimate.



 Mining Method and assumptions

 Mining factors and assumptions have been derived from the historical information available for
 mature potash mines, and the current best mining practices. The Kola orebody will be mined using



                                                                                                  33
conventional underground (UG) mining method consisting of room and pillar in a ‘chevron’ (or
herring-bone) pattern, with Continuous Miners (CM’s) mining machines of the drum-cutting type.

Most of the mining will be one level only where only the US will be extracted. In some areas, both
the US and the LS will be mined, in which case the LS will only be mined after the US. In other areas
only the HWS will be mined.

In determining the Ore Reserves, a minimum mining height of 2.5 m was selected based on
capability of the selected CM which is also capable of mining up to 6 m. Areas of the Mineral
Resource with a seam height of less than 2.5 m were excluded from the Ore Reserves.

The mine design is typical of potash mines, having 4 entries for access drives. Each drive will typically
be 8 m wide and 3 m to 6 m high depending on the seam height. The typical configuration for the
chevron pattern is an angle of 65 degrees from the middle entry, and length of 150 m approximately.

The Mine design relies on geotechnical modelling, carried out in FLAC 3D software. The modelling
was based on geotechnical test-work carried out on representative core samples from the sylvinite
seams and host rocks (rock-salt and lesser carnallitite). The geotechnical modelling established that
the mine is stable over the LoM for the DFS mine design which includes the following geotechnical
parameters:

    -   Where both the US and LS seams are to be mined, the support interval between the US and
        LS must be at least 3 m thick,

    -   An 8 m wide pillar between two consecutive production rooms (of 8 m each).

    -   A 50 m wide pillar between two production panels. Similarly, a 50 m wide pillar will be left in
        place between the side of the production panel and the main haulage access drift.

    -   The interval of rock-salt between the mine openings and the floor of the overlying anhydrite
        member is referred to as the ‘salt back’. This is typically over 30 m but is less in some areas.
        The DFS design allows that it may be a minimum of 15 m unless the Anhydrite Member is
        well developed where it may be 10 m. This is based on the results of the geotechnical model.

    -   A stand-off distance of 20 m radius from the exploration holes.

    -   A stand-off distance of 30 m radius from class 2 geological anomalies and 60 m radius from
        class 3 geological anomalies.

    -   A pillar of 300 m in radius around the exhaust and intake shafts.

Based on the selected mining equipment (CMs), it is anticipated that a good cutting selectivity would
be achieved, and that a maximum of 0.2 m of dilution material above and/or below the potash seam
is likely. Carnallitite is present in the floor of the seam in some areas. The roof is always of rock-salt.
On average, the dilution material is equivalent to approximately 10% of the tonnage of the Ore
Reserves. Dilution material was assigned a grade of 3% KCl if rock-salt and 0% KCl if Carnallitite.

Based on the configuration of the proposed mining layout, and based on the anticipated fleet of
mining equipment, it is assumed that the mining recovery in the different extraction chambers will
be 90% on average (i.e. mining losses will be 10%). This considers the mining action which will lead
to some losses such as material being excavated and left in the production chamber, or mineralized
material left in the floor or roof, etc.



                                                                                                        34
The Global extraction ratio is 30% (25% in the LS, 33% in the US and 28% in the HWS). This is after
the removal of all pillars (pillars around the geological anomalies, the barrier pillars, the shaft pillar,
the pillars between chevrons and main access drifts), the stand-off distance around boreholes,
mining losses and the exclusion of sylvinite <2.5 m thick.

Two vertical shafts, each with 7 m internal diameter, will be sunk at a central location in the Ore
Reserves, to provide access to the underground. The intake shaft will be equipped with a hoist and
cage system for transportation of persons and material, while the exhaust shaft will be equipped
with a vertical conveyor system to convey the mined-out ore to the surface. Both shafts are
approximately 270 m deep.

Ore haulage from the CMs to the feeder breaker apron feeder will be done using electrically-
powered Shuttle Cars.

Underground conveyor belts will be used for ore transportation in all the areas of the mine. The
belts are distributed in the mains and submains and ultimately in the working panels near the CM
working face. The ore will be placed on the belts from the feeder breakers that were fed by the
shuttle cars. The belt conveyors will carry the ore loaded by the feeder breakers to the ore bins.
Then the ore is conveyed from the ore bins to the Pocket Lift system located in the exhaust shaft.

The life-of mine (LoM) for the Kola Potash Project Mine is 27 years, of which full-scale 2.0 Mt per
annum of MoP production is for 25 years.

For the LoM production plan and economic analysis an additional 9.7 Mt of sylvinite classified as
Inferred Mineral Resource was included. This material contributes 6.0% of the total amount of ROM
material and 7% of the total contained KCl and is planned to be materially extracted from year 12
onwards. Without the inclusion of this material the LoM is 24 years, with a reduction of NPV10 of
approximately USD100 million and reduction in IRR of 0.5%.



Processing Method and Assumptions

The final product will be MoP K60, comprising at least 95% KCl. The DFS design allows for the
production of this MoP in two forms, standard and granular. Granular material will be coloured red.

A conventional flotation process will be utilized for potash concentration. This method is well
established, and the most widely used method in the potash industry.

The metallurgical test work campaigns were based on representative core samples of the three
seams, collected from the exploration drill hole cores. They comprised US (114.5 kg), LS (102.0 kg)
and HWS (10.3 kg). All test work was carried out at the Saskatchewan Research Council (SRC)
laboratory in Saskatoon, Canada

The process flow sheets were optimised to meet the initial DFS target of 2.0Mtpa of Muriate of
Potash (MoP), at 95.3% KCl purity, with a minimum KCl recovery of 89.5% of the KCl content in the
ROM fed to the Process Plant.

Two metallurgical test work campaigns were conducted during the DFS in 2017 and 2018. The main
philosophy of the first DFS test work campaign was to prepare representative test feedstocks for
each seam, confirm KCl liberation, characterize the feedstock, perform flotation tests, optimize the
operating conditions, optimize reagent consumption for optimum KCl recovery and grade
performance, perform a sensitivity test on flotation.

                                                                                                        35
The objective of the second test work campaign was to optimize the flotation process and improve
the plant recovery from the initial flow sheet. The results of this second test work campaign, when
processed in SYSCAD™ model, demonstrated that the new flotation process performed above the
project performance minimum target.

The alternative flotation flow sheet was finally selected based on the second test works and
SYSCAD™ modelling. With a raw ore feed grade of 31.3% KCl, the material balance confirmed that
the project objectives can be met with a production of 2Mtpa with an expected product recovery of
89.9%, and a final product grade of 95.3% KCl.

To reflect the final DFS marketing assumption, the process plant will be designed to achieve a
granular/standard ratio average over one year equal to 86%/14%.

Magnesium and insoluble material are considered deleterious. The extremely low content of these
materials in the ore mean that their removal is relatively straightforward. Insoluble material is
removed by attrition scrubbing and magnesium removed by brine purge.

The metallurgical test work campaigns provided a sound foundation for the development of the
process design engineering and subsequent project performance, overall engineering studies and
the cost estimate.



Cut-off Grades

A Cut-off grade (CoG) of 9.9% KCl has been calculated for the Ore Reserve Estimation based on
forecast revenue and estimated operating costs. The cut-off calculation included all operating costs
associated with the extraction, processing and marketing of ore material. The cut-offs are based on a
Muriate of Potash (MoP) price of US$250 per tonne of MoP. Inputs to the calculation of cut-off
grades included:

    -   Mining costs

    -   Metallurgical recoveries

    -   Processing costs

    -   Shipping costs

    -   General and administrative costs

All sylvinite of the Measured and Indicated Resource is above 9.9% KCl (the Ore Reserve calculated
CoG), therefore all the Measured and Indicated Sylvinite Resources have been considered for the
Ore Reserve Estimate by application of the other modifying factors.

The uniformly very low content of deleterious elements (magnesium and insoluble material) meant
that these did not require consideration in the CoG determination.

Estimation Methodology

    -   Capital Cost:

    Capital Cost Estimate has been developed for each scope area, expressed in United States
    dollars (USD) and based on July 2018 prices.



                                                                                                  36
Currency Exchange Rates are sourced from Oanda (www.oanda.com) spot rates (September
2017).

Capital Cost Estimate is a full AACEI Class II Estimate (+/-10%), based on Erected quantities
(which include Design Growth Allowances) determined from complete Material Take-Offs and
application of unit rates. For Main Equipment, 82% of the cost is based on quotations from
Vendors.

Escalation of 6.4% (up to project completion) has been considered, and a total Contingency of
6.0% has been added, resulting from the complete Risk Analysis performed.

Three capital periods have been defined: Initial (Construction and up to first barge loading,
Month +47); Deferred (up to ramp-up completion, Month +65); Sustaining (after Month +65)

-   Operating Cost:

Operating costs were estimated from first principles using quoted rates, estimated consumption,
forecast labour complements and remuneration estimates.

Operating Cost covering the Life of Mine (25 years) has been estimated in USD based on 2nd
quarter 2018 costs. They include costs for Electric power, Fuel, Gas, Labour, Maintenance parts,
Operating Consumables, General and Administration costs and Contract for Employee Facilities.

The Operating Cost Estimate excludes Transshipment and Sea Transport.

Transshipment costs based on Louis Dreyfus Armateurs contract budget quotation for their
barges and boats, including 5-years drydocking costs.

Ocean Freight Transportation estimate produced by CRU Consulting.

Mine Closure cost estimated in accordance with the Conceptual Rehabilitation and Closure Plan
developed by SRK Consulting.

Mine Closure duration of 60 months (5 years), considering 24 months (2 years) for the effective
dismantling, demolition and rehabilitation works and 36 months (3 years) for the Post-Closure
Monitoring and Maintenance period.

Quantities of equipment, materials and works directly assessed from the Material Take-off
prepared within the framework of the DFS for the Kola Potash Project.

Unit rates for dismantling, demolition and rehabilitation works directly based on the
Construction Unit rates applied for the CAPEX estimate of the Kola Potash Project and adjusted
by using ratios to assess the lower consuming time and means for dismantling, removing and
demolition works.

State mineral royalties of 3% of Gross Revenue were applied

Measured Mineral Resources were used for the estimation of the Proved Ore Reserves.
Indicated Mineral Resources were used for the estimation of Probable Ore Reserves.

The conversion of Measured and Indicated Mineral Resource to Proved and Probable Ore
Reserve reflects the Competent Person’s view of the deposit.

40.6% of the Ore Reserves are classified in the Proved category and 59.4% of the Ore Reserves
are classified in the Probable category


                                                                                             37
Material Modifying Factors

   -   Status of Environmental Approvals

   The Kola ESIA, initially approved on 10 October 2013, was amended to reflect the design
   changes made to the Kola Project as part of the Definitive Feasibility Study (“DFS”) and has been
   amended to include the service corridors for a gas pipeline and overhead power line. The
   application and terms of reference for amending the ESIA were approved on 12 April 2018 by
   the Minister of Tourism and Environment. The amended ESIA approval covers the proposed
   mining and processing of the Kola sylvinite Deposit. The ESIA for the Kola Mining License is
   expected to be approved by the Minister of Tourism and Environment of the Republic of Congo
   shortly through the issuance of a certificate of environmental compliance (the “Compliance
   Certificate”). The Compliance Certificate is renewed annually until construction of a mine on the
   license is completed. The Company shall carry out their construction operations in compliance
   with the environmental and social management plan as part of the approved ESIA and will be
   subject to Regulator’s environmental management compliance audits.



Status of Mining Tenements and Approvals

Kore Potash Limited (which is 100% owned by Kore Potash Plc.) and formerly known as Elemental
Minerals Limited (ELM), has a 97%-holding in Sintoukola Potash SA (SPSA), a company registered in
the ROC. The remaining 3% in SPSA is held by “Les Establissements Congolais MGM” (Republic of
Congo). SPSA in turn has a 100% interest in its two ROC subsidiaries, Kola Potash Mining SA and
Dougou Potash Mining SA. The Kola Deposit is within the Kola Mining Lease which is 100% held by
Kola Potash Mining SA

   -   In May 2008, a non-exclusive Prospecting Authorisation was granted to Sintoukola Potash
       covering an area of 1,436.5 km2. On 13 August 2009, this was changed to a “Permis de
       Recherches” (Exploration Permit) named ‘Permis Sintoukola’ under decree No. 2009-237
       giving the Company exclusive rights to explore;

   -   On 27 November 2012, the first renewal of the permit was made, by decree No. 2012-1193
       and reduced in size to 1,408 km2;

   -   On the 9 August 2013, a Mining Lease for Kola issued under decree No. 2013-312, totalling
       204.52 km2 falling entirely within the Exploration Permit.



Other Governmental Factors

A mining convention entered into between the RoC government and the Companies on 8 June 2017
and gazetted into law on 7 December 2018 concludes the framework envisaged in the 25-year
renewable Kola Mining License granted in August 2013. The Mining Convention provides certainty
and enforceability of the key fiscal arrangements for the development and operation of Kola Mining
Licenses, which amongst other items include import duty and VAT exemptions and agreed tax rates
during mine operations. The Mining Convention provides strengthened legal protection of the


                                                                                                 38
Company’s investments in the Republic of Congo through the settlement of disputes by international
arbitration.



Infrastructure Requirements for Selected Mining, Processing and Product Transportation to
Market

The project infrastructure is comprised of the mine-site (shaft and offices), the process plant on the
coast (at Tchiboula), the 34 km infrastructure corridor between these (including the overland
conveyor, service road and power line), the gas line from M’boundi gas field, overhead line from the
MKII substation, the accommodation and administrative camp and the transshipment facilities.

Exclusive land acquisition rights have been granted to the Project company for plant development
through ministerial order gazetted on 30 August 2018 (the “Déclaration d’Utilité Publique” or
“DUP”) valid for three years and renewable once for a two-year period.

The summarised infrastructure requirements are summarised below;

    -   Road access to the Kola Potash Project sites will be via the existing Route Nationale 5 (RN5)
        that is paved. An 11.6 km long, 8 m wide, paved road will be laid from the existing RN5 to
        the Process Plant Site. Road access to the Mine Site will be via a 6.5 m wide private Service
        Road which will run alongside the Overland Conveyor.

    -   Electrical Power will be sourced from the ROC national grid. A 59 km long 220 kV
        transmission line will be built from the Mongo Kamba II substation north of Pointe Noire to
        the Process Plant Site. A second 34 km long 220 kV transmission line will be built from the
        Process Plant Site to the Mine Site.

    -   The Natural Gas needed for product drying will be supplied by a 75 km long pipeline from
        the M’Boundi gas treatment plant.

    -   Raw Water will be supplied from wells located at the Mine Site (3 wells) and at the
        Accommodation Camp close to the Process Plant Site (4 wells).

    -   Ongoing operational labour will be a combination of permanent employees, permanent
        contract services, and part-time contract services for intermittent needs. The total
        requirement for permanent employees is expected to be 731. Local labour resources will be
        used for the majority of labour requirements, while some selected positions are planned as
        expat roles.

    -   The Accommodation Camp has been sized for a capacity of 850 beds and will be located on
        high ground to the northeast of the Process Plant.

    -   The Kola Potash Project intends to export 2.2 Mt MoP to world markets each year. A
        transshipment solution has been developed, whereby the material for export is loaded at a
        dedicated Jetty onto self-propelled shuttle barges (two units), which will then travel to
        Ocean Going Vessels (OGVs) anchored 11 nautical miles (20 km) offshore in a dedicated
        transshipment area. The cargo will be transferred from the Barges to the OGVs using a
        Floating Crane Transhipper Unit (FCTU).




                                                                                                   39
                                                                       APPENDIX C
                                               JORC 2012 Table 1 Section 4 Ore Reserves
 Appendix C: JORC 2012 – Table 1, Section 4 Ore Reserves

 The Company has relied upon its previously reported information, in particular the announcement of 6 July 2017, in respect of the matters related to
 sections 1, 2 and 3.

 The Company notes that the Ore Reserve estimate is based on a shorter mine life (27 years) and a lower production rate (full scale 2.0Mtpa MoP) compared
 to the Company’s production target of 2.2Mtpa MoP over a 33 year life. This is a result of the assumptions for the Ore Reserve being developed during the
 DFS preparation phase (so does not incorporate improvements contained in the final DFS) and the inclusion of Inferred Mineral Resource in the production
 target.

 The Company confirms that the information in sections 1, 2 and 3 has not changed since it was last reported and has been included in Appendix D of this
 report for compliance with ASX requirements and ease of reference.

 Section 4 Estimation and Reporting of Ore Reserves

 (Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section)

Criteria                       JORC Code explanation                               Commentary
                                Description of the Mineral Resource estimate        The Ore Reserve estimate is based on the Indicated and Measured Mineral Resource
                                    used as a basis for the conversion to an Ore        estimate for sylvinite carried out by Met-Chem DRA and reported in accordance
                                    Reserve.                                            with the JORC Code (2012 edition), announced by the Company on 6 July 2017.
Mineral Resource estimate                                                           The Measured Mineral Resource is 216 Mt with an average grade of 35.0% KCl. The
for conversion to Ore           Clear statement as to whether the Mineral
                                    Resources are reported additional to, or            Indicated Mineral Resource is 292 Mt with an average grade of 35.7% KCl.
Reserves
                                    inclusive of, the Ore Reserves.                 The total combined Measured and Indicated Mineral Resources are 508 Mt with an
                                                                                        average grade of 35.4% KCl.
                                                                                    The Measured and Indicated Mineral Resources for sylvinite are hosted by 3 layers (or


                                                                                                                                                                       40
Criteria       JORC Code explanation                              Commentary
                                                                        ‘seams’) which are as follows from uppermost; the Hanging Wall Seam (HWS), the
                                                                        Upper Seam (US) and the Lower Seam (LS), each separated by rock-salt (a rock-type
                                                                        typically comprised of >95% halite).
                                                                   Magnesium and insoluble content are considered deleterious but are present in only
                                                                        very small amounts in the ore (average of 0.07% and 0.14%respectively).
                                                                   The Mineral Resource Estimate was delivered to the Ore Reserve consultants in the form
                                                                        of a standard block model, blocks having dimensions 250 x 250 x 1 m, each block
                                                                        having a KCl grade, a density, and magnesium and insoluble content.
                                                                   The Mineral Resources are inclusive of the Ore Reserves (i.e. the Ore Reserves are the
                                                                        mineable part of the Mineral Resources after the application of technical, economic
                                                                        and other modifying factors.
                                                                   Areas of potential structural disturbance, referred to as geological anomalies were
                                                                        excluded from the Measured and Indicated Mineral Resource. They were identified
                                                                        from seismic data as is standard in potash mining districts elsewhere.)
                                                                   A 10% cut-off grade (CoG) was used in the Mineral Resource Estimate.

               Comment on any site visits undertaken by the        A site visit was conducted by the Competent Person for the Ore Reserve Estimate
                  Competent Person and the outcome of                  between June 26 to June 28, 2017. The visit included exploration camp inspection,
Site visits       those visits.                                        core viewing, site of shafts and process plant, access route from Pointe Noire. The
               If no site visits have been undertaken indicate         site visit supported the findings of the Competent Person.
                    why this is the case.
              
 The type and level of study undertaken to enable   A comprehensive Definitive Feasibility Study (DFS) was undertaken including a Life of
                   Mineral Resources to be converted to Ore           Mine (LoM) plan. The DFS considers all relevant modifying factors, to permit the
                   Reserves.                                          conversion of the Mineral Resources to Ore Reserves.
               The Code requires that a study to at least Pre-    The DFS includes Early Contractor Involvement (ECI) by the construction company to
                   Feasibility Study level has been undertaken        ensure that a capital cost estimate of +/- 10% level of accuracy can be achieved.
Study status
                   to convert Mineral Resources to Ore
                   Reserves. Such studies will have been
                   carried out and will have determined a mine
                   plan that is technically achievable and
                   economically viable, and that material


                                                                                                                                                      41
Criteria             JORC Code explanation                                Commentary
                         modifying factors have been considered.
                    
                      The basis of the cut-off grade(s) or quality         A cut-off grade (CoG) of 9.9% KCl has been calculated for the Ore Reserve Estimation
                         parameters applied.                                  based on forecast revenue and estimated operating costs. The cut-off calculation
                                                                              included all operating costs associated with the extraction, processing and
                                                                              marketing of ore material. The cut-offs are based on a Muriate of Potash (MoP) price
                                                                              of US$250 per tonne of MoP. Inputs to the calculation of cut-off grades included:
                                                                              - Mining costs
                                                                              - Metallurgical recoveries
                                                                              - Processing costs
Cut-off parameters
                                                                              - Shipping costs
                                                                              - General and administrative costs
                                                                          All sylvinite of the Measured and Indicated Resource is above 9.9% KCl (the Ore Reserve
                                                                               calculated CoG), therefore all the Measured and Indicated Sylvinite Resources have
                                                                               been considered for the Ore Reserve Estimate by application of the other modifying
                                                                               factors.
                                                                          The uniformly very low content of deleterious elements (magnesium and insoluble
                                                                              material) meant that these did not require consideration in the CoG determination.
                     The method and assumptions used as reported          Mining factors and assumptions have been derived from the historical information
                         in the Pre-Feasibility or Feasibility Study to       available for mature potash mines, and the current best mining practices.
                         convert the Mineral Resource to an Ore           The Kola orebody will be mined using conventional underground (UG) mining method
                         Reserve (i.e. either by application of               consisting of room and pillar in a ‘chevron’ (or herring-bone) pattern, with
                         appropriate factors by optimisation or by            Continuous Miners (CM’s) mining machines of the drum-cutting type.
Mining factors or        preliminary or detailed design).
                                                                          The mining equipment selected for the Kola Potash Project Mine are CM’s.
assumptions          The choice, nature and appropriateness of the
                                                                          Most of the mining will be one level only where only the US will be extracted. In some
                         selected mining method(s) and other mining
                                                                             areas, both the US and the LS will be mined, in which case the LS will only be mined
                         parameters including associated design
                                                                             after the US. In other areas only the HWS will be mined.
                         issues such as pre-strip, access, etc.
                                                                          In determining the Ore Reserves, a minimum mining height of 2.5 m was selected based
                     The assumptions made regarding geotechnical
                                                                              on capability of the selected CM which is also capable of mining up to 6 m. Areas of
                         parameters (eg pit slopes, stope sizes, etc),


                                                                                                                                                             42
Criteria   JORC Code explanation                                Commentary

               grade control and pre-production drilling.          the Mineral Resource with a seam height of less than 2.5 m were excluded from the
           The major assumptions made and Mineral                  Ore Reserves.
              Resource model used for pit and stope                 The mine design is typical of potash mines, having 4 entries for access drives. Each
              optimisation (if appropriate).                        drive will typically be 8 m wide and 3 m to 6 m high depending on the seam height.
           The mining dilution factors used.                        The typical configuration for the chevron pattern is an angle of 65 degrees from the
                                                                    middle entry, and length of 150 m approximately.
           The mining recovery factors used.
           Any minimum mining widths used.
                                                                The Mine design relies on geotechnical modelling, carried out in FLAC 3D software. The
           The manner in which Inferred Mineral Resources
                                                                    modelling was based on geotechnical test-work carried out on representative core
               are utilised in mining studies and the
                                                                    samples from the sylvinite seams and host rocks (rock-salt and lesser carnallitite).
               sensitivity of the outcome to their inclusion.
                                                                    The geotechnical modelling established that the mine is stable over the LoM for the
           The infrastructure requirements of the selected
                                                                    DFS mine design which includes the following geotechnical parameters:
               mining methods.
                                                                -   Where both the US and LS seams are to be mined, the support interval between the
                                                                    US and LS must be at least 3 m thick.
                                                                -   An 8 m wide pillar between two consecutive production rooms (of 8 m each).
                                                                -   A 50 m wide pillar between two production panels. Similarly, a 50 m wide pillar will
                                                                    be left in place between the side of the production panel and the main haulage
                                                                    access drift.
                                                                -   The interval of rock-salt between the mine openings and the floor of the overlying
                                                                    anhydrite member is referred to as the ‘salt back’. This is typically over 30 m but is
                                                                    less in some areas. The DFS design allows that it may be a minimum of 15 m unless
                                                                    the Anhydrite Member is well developed where it may be 10 m. This is based on the
                                                                    results of the geotechnical model.
                                                                -   A stand-off distance of 20 m radius from the exploration holes.
                                                                -   A stand-off distance of 30 m radius from class 2 geological anomalies and 60 m
                                                                    radius from class 3 geological anomalies.
                                                                -   A pillar of 300 m in radius around the exhaust and intake shafts.




                                                                                                                                                     43
Criteria   JORC Code explanation   Commentary
                                    Based on the selected mining equipment (CMs), it is anticipated that a good cutting
                                        selectivity would be achieved, and that a maximum of 0.2 m of dilution material
                                        above and/or below the potash seam is likely. Carnallitite is present in the floor of
                                        the seam in some areas. The roof is always of rock-salt. On average, the dilution
                                        material is equivalent to approximately 10% of the tonnage of the Ore Reserves.
                                        Dilution material was assigned a grade of 3% KCl if rock-salt and 0% KCl if
                                        Carnallitite.
                                   Based on the configuration of the proposed mining layout, and based on the
                                       anticipated fleet of mining equipment, it is assumed that the mining recovery in
                                       the different extraction chambers will be 90% on average (i.e. mining losses will be
                                       10%). This considers the mining action which will lead to some losses such as
                                       material being excavated and left in the production chamber, or mineralized
                                       material left in the floor or roof, etc.
                                   The Global extraction ratio is 30% (25% in the LS, 33% in the US and 28% in the HWS).
                                       This is after the removal of all pillars (pillars around the geological anomalies, the
                                       barrier pillars, the shaft pillar, the pillars between chevrons and main access drifts),
                                       the stand-off distance around boreholes, mining losses and the exclusion of sylvinite
                                       <2.5 m thick.
                                   Two vertical shafts, each with 7 m internal diameter, will be sunk at a central location in
                                      the Ore Reserves, to provide access to the underground. The intake shaft will be
                                      equipped with a hoist and cage system for transportation of persons and material,
                                      while the exhaust shaft will be equipped with a vertical conveyor system to convey
                                      the mined-out ore to the surface. Both shafts are approximately 270 m deep.
                                   One haulage from the CMs to the feeder breaker apron feeder will be done using
                                      electrically- powered Shuttle Cars.
                                   Underground conveyor belts will be used for ore transportation in all the areas of the
                                      mine. The belts are distributed in the mains and submains and ultimately in the
                                      working panels near the CM working face. The ore will be placed on the belts from
                                      the feeder breakers that were fed by the shuttle cars. The belt conveyors will carry
                                      the ore loaded by the feeder breakers to the ore bins. Then the ore is conveyed from

                                                                                                                          44
Criteria                   JORC Code explanation                               Commentary
                                                                                  the ore bins to the Pocket Lift system located in the exhaust shaft.
                                                                               The life-of mine (LoM) for the Kola Potash Project Mine is 27 years, of which full-scale 2.0
                                                                                   Mt per annum of MoP production is for 25 years. For the LoM production plan and
                                                                                   economic analysis an additional 9.7 Mt of sylvinite classified as Inferred Mineral
                                                                                   Resource was included. This material contributes 6.0% of the total amount of ROM
                                                                                   material and 7% of the total contained KCl and is planned to be materially extracted
                                                                                   from year 12 onwards. Without the inclusion of this material the LoM is 24 years,
                                                                                   with a reduction of NPV10 of approximately USD100 million and reduction in IRR of
                                                                                   0.5%.
                           The metallurgical process proposed and the          The final product will be MoP K60, comprising at least 95% KCl. The DFS design allows for
                              appropriateness of that process to the style         the production of this MoP in two forms, standard and granular. Granular material
                              of mineralization.                                   will be coloured red.
                           Whether the metallurgical process is well-tested    A conventional flotation process will be utilized for potash concentration. This method is
                              technology or novel in nature.                       well established, and the most widely used method in the potash industry.
                           The nature, amount and representativeness of        The Metallurgical Test work Campaigns were based on representative core samples of
                               metallurgical test work undertaken, the             the three seams, collected from the exploration drill hole cores. They comprised US
                               nature of the metallurgical domaining               (114.5 kg), LS (102.0 kg) and HWS (10.3 kg). All test work was carried out at the
                               applied and the corresponding metallurgical         Saskatchewan Research Council (SRC) laboratory in Saskatoon, Canada.
Metallurgical factors or       recovery factors applied.                       The process flow sheets were optimized to meet the Kola Potash Project targets of
assumptions                Any assumptions or allowances made for                  producing 2.0Mtpa of Muriate of Potash (MoP), at 95.3% KCl purity, with a minimum
                              deleterious elements.                                KCl recovery of 89.5% of the KCl content in the ROM fed to the Process Plant.
                           The existence of any bulk sample or pilot scale     Two metallurgical test work campaigns were conducted during the DFS in 2017 and
                               test work and the degree to which such             2018. The main philosophy of the first DFS test work campaign was to prepare
                               samples are considered representative of           representative test feedstocks for each seam, confirm KCl liberation, characterize
                               the orebody as a whole.                            the feedstock, perform flotation tests, optimize the operating conditions, optimize
                           For minerals that are defined by a specification,      reagent consumption for optimum KCl recovery and grade performance, perform a
                               has the Ore Reserve estimation been based          sensitivity test on flotation.
                               on the appropriate mineralogy to meet the       The objective of the second test work campaign was to optimize the flotation process
                               specifications                                     and improve the plant recovery from the initial flow sheet. The results of this


                                                                                                                                                                      45
Criteria        JORC Code explanation                              Commentary
                                                                      second test works processed in SYSCAD™ model demonstrated that the new
                                                                      flotation process performed above the project performance minimum target.
                                                                   The alternative flotation flow sheet was finally selected based on the second test works
                                                                       and SYSCAD™ modelling. With a raw ore feed grade of 31.3% KCl, the material
                                                                       balance confirmed that the project objectives can be met with a production of
                                                                       2Mtpa with an expected product recovery of 89.9%, and a final product grade of
                                                                       95.3% KCl.
                                                                   To reflect the final DFS marketing assumption, the process plant will be designed to
                                                                       achieve a granular/standard ratio average over one year equal to 86%/14%.
                                                                   Magnesium and insoluble material are considered deleterious. The extremely low
                                                                      content of these materials in the ore mean that their removal is relatively
                                                                      straightforward. Insoluble material is removed by attrition scrubbing and
                                                                      magnesium removed by brine purge.
                                                                   The metallurgical test work campaigns provided a sound foundation for the development
                                                                       of the process design engineering and subsequent project performance, overall
                                                                       engineering studies and the cost estimate.


                The status of studies of potential environmental   Exploration and data acquisition and activities were undertaken under the auspices of an
                    impacts of the mining and processing               approved Environmental Impact Assessment (EIA) and Environmental Management
                    operation.    Details    of    waste    rock       Plan (EMP) set out to international best practice and approved by the RoC regulator.
                    characterisation and the consideration of      The Environmental and Social Impact Assessment (ESIA) for the operation of the mining
                    potential sites, status of design options          project was initially prepared by the consulting company SRK in Cardiff and
                    considered and, where applicable, the status       approved by the RoC regulator in 2013.
Environmental
                    of approvals for process residue storage and
                                                                   An amendment was prepared by SRK in parallel with the DFS to capture changes to the
                    waste dumps should be reported.
                                                                       project description and was submitted to the ROC regulator in Q4 2018.
                                                                   An Environmental and Social Action Plan (ESAP) captured the differences between the
                                                                       national process required by the Congolese authorities and International Best
                                                                       Practice to Equator Principles and IFC Performance Standards.



                                                                                                                                                      46
Criteria         JORC Code explanation                              Commentary
                                                                     The ESIA addresses all impacts of the operation, from mine-site to exportation, as listed
                                                                         in the infrastructure section below.
                                                                    The mine-site and a portion of the infrastructure corridor are located within the
                                                                        economic development and buffer zones of the Conkouati-Douli National Park
                                                                        (CDNP). Project activity in this area was minimized and influx is led away from the
                                                                        park through the siting of employee facilities outside the CDNP.
                                                                    Waste rock is very minimal, being only the <0.2% of insoluble material or just under 1Mt
                                                                       over the LoM. The bulk of the waste is dissolved halite in the form on an NaCl brine.
                                                                       All waste streams will be diluted with seawater to a concentration of 200mg/l and
                                                                       discharged via a diffuser into the ocean. This material has been characterised and
                                                                       ecotoxicological testing has been undertaken to confirm that no adverse impacts are
                                                                       caused at the edge of the mixing zone.
                                                                    The overall conclusion of the ESIA is that negative environmental impacts identified can
                                                                        be reduced to acceptable levels.
                                                                    A rehabilitation and closure plan has been prepared and included in owner's costs of the
                                                                        project.
                                                                    Biodiversity, air quality, social, archeological, water and noise baseline studies have been
                                                                        prepared and incorporated into the ESIA process.
                 The existence of appropriate infrastructure:       The project infrastructure is comprised of the mine-site (shaft and offices), the process
                    availability of land for plant development,         plant on the coast (at Tchiboula), the 34 km infrastructure corridor between these
                    power, water, transportation (particularly          (including the overland conveyor, service road and power line), the gas line from
                    for      bulk      commodities),      labour,       M’boundi gas field, overhead line from the MKII substation, the accommodation and
                    accommodation; or the ease with which the           administrative camp and the transshipment facilities.
Infrastructure      infrastructure can be provided, or accessed.    Exclusive land acquisition rights have been granted to the Project company for plant
                                                                        development through ministerial order gazetted on 30 August 2018 (the
                                                                        “Déclaration d’Utilité Publique” or “DUP”) valid for three years and renewable once
                                                                        for a two-year period.
                                                                    The Process Plant Site is located on the coast, approximately 60 km north west of Pointe
                                                                        Noire while the Mine Site is located inland and 33 km north and of the Project


                                                                                                                                                           47
Criteria   JORC Code explanation                         Commentary
                                                            Process Plant.
                                                             Road access to the Kola Potash Project sites will be via the existing Route Nationale
                                                             5 (RN5) that is paved. An 11.6 km long, 8 m wide, paved road will be laid from the
                                                             existing RN5 to the Process Plant Site. Road access to the Mine Site will be via a 6.5
                                                             m wide private Service Road which will run alongside the Overland Conveyor.
                                                         Electrical Power will be sourced from the ROC national grid. A 59 km long 220 kV
                                                              transmission line will be built from the Mongo Kamba II substation north of Pointe
                                                              Noire to the Process Plant Site. A second 34 km long 220 kV transmission line will be
                                                              built from the Process Plant Site to the Mine Site.
                                                         The Natural Gas needed for product drying will be supplied by a 75 km long pipeline from
                                                             the M’Boundi gas treatment plant.
                                                         Raw Water will be supplied from wells located at the Mine Site (3 wells) and at the
                                                            Accommodation Camp close to the Process Plant Site (4 wells).
                                                         Ongoing operational labour will be a combination of permanent employees, permanent
                                                            contract services, and part-time contract services for intermittent needs. The total
                                                            requirement for permanent employees is expected to be 731. Local labour
                                                            resources will be used for the majority of labour requirements, while some selected
                                                            positions are planned as expat roles.
                                                         The Accommodation Camp has been sized for a capacity of 850 beds and will be located
                                                             on high ground to the northeast of the Process Plant.
                                                         The Kola Potash Project intends to export 2Mt MoP to world markets each year. A
                                                             transshipment solution has therefore been developed, whereby the material for
                                                             export is loaded at a dedicated Jetty onto self-propelled shuttle Barges (two units),
                                                             which will then travel to Ocean Going Vessels (OGVs) anchored 11 nautical miles (20
                                                             km) offshore in a dedicated transshipment area. The cargo will be transferred from
                                                             the Barges to the OGVs using a Floating Crane Transhipper Unit (FCTU).
           The derivation of, or assumptions made,           Capital Cost:
Costs         regarding projected capital costs in the   Capital Cost Estimate has been developed for each scope area, expressed in United
              study.


                                                                                                                                              48
Criteria   JORC Code explanation                                Commentary
            The methodology used to estimate operating             States dollars (USD) and based on July 2018 prices.
                costs.                                          Currency Exchange Rates are sourced from Oanda (www.oanda.com) spot rates
           Allowances made for the content of deleterious           (September 2017). Forecast exchange rates were based on World Bank.
               elements.                                        Capital Cost Estimate is a full AACEI Class II Estimate (+/-10%), based on Erected
           The derivation of assumptions made of metal or           quantities (which include Design Growth Allowances) determined from complete
               commodity price(s), for the principal                Material Take-Offs and application of unit rates. For Main Equipment, 82% of the
               minerals and co- products.                           cost is based on quotations from Vendors.
           The source of exchange rates used in the study.      Escalation of 6.4% (up to project completion) has been considered, and a total
           Derivation of transportation charges.                    Contingency of 6.0% has been added, resulting from the complete Risk Analysis
                                                                    performed.
           The basis for forecasting or source of treatment
               and refining charges, penalties for failure to   Three capital periods have been defined: Initial (Construction and up to first barge
               meet specification, etc.                             loading, Month +47); Deferred (up to ramp-up completion, Month +65); Sustaining
                                                                    (after Month +65)
           The allowances made for royalties payable, both
               Government and private.                               Operating Cost:
                                                                Operating costs were estimated from first principles using quoted rates, estimated
                                                                   consumption, forecast labour complements and remuneration estimates.
                                                                Operating Cost covering the Life of Mine (25 years) has been estimated in 2Q2018 USD.
                                                                   They include costs for Electric power, Fuel, Gas, Labour, Maintenance parts,
                                                                   Operating Consumables, General and Administration costs and Contract for
                                                                   Employee Facilities.
                                                                The Operating Cost Estimate excludes Transshipment and Sea Transport.
                                                                Transshipment costs based on Louis Dreyfus Armateurs contract budget quotation for
                                                                    their barges and boats, including 5-years drydocking costs.
                                                                Ocean Freight Transportation estimate produced by CRU Consulting.
                                                                Mine Closure cost estimated in accordance with the Conceptual Rehabilitation and
                                                                   Closure Plan developed by SRK Consulting.
                                                                Mine Closure duration of 60 months (5 years), considering 24 months (2 years) for the
                                                                   effective dismantling, demolition and rehabilitation works and 36 months (3 years)


                                                                                                                                                49
Criteria            JORC Code explanation                               Commentary
                                                                             for the Post-Closure Monitoring and Maintenance period.
                                                                         Quantities of equipment, materials and works directly assessed from the Material Take-
                                                                             off prepared within the framework of the DFS for the Kola Potash Project.
                                                                         Unit rates for dismantling, demolition and rehabilitation works directly based on the
                                                                             Construction Unit rates applied for the CAPEX estimate of the Kola Potash Project
                                                                             and adjusted by using ratios to assess the lower consuming time and means for
                                                                             dismantling, removing and demolition works.
                                                                        State mineral royalties of 3% of Gross Revenue applies
                                                                             Other criteria
                                                                        The marketed MoP will comprise at least 95% KCl, with a maximum of 0.2% Mg and 0.3%
                                                                            Insolubles.
                    The     derivation of, or assumptions made          Head grade, recovery and product grade forecasts were based on the DFS results.
                          regarding revenue factors including head      Commodity prices were informed by CRU and Integer reports.
                          grade, metal or commodity price(s)
                          exchange rates, transportation and
Revenue factors           treatment charges, penalties, net smelter
                          returns, etc.
                    The derivation of assumptions made of metal or
                        commodity price(s), for the principal metals,
                        minerals and co-products.
                    The demand, supply and stock situation for the      Based on CRU estimates, global potash demand is forecast to grow from 74.9Mt in 2022
                        particular commodity, consumption trends            to exceed 100Mt by 2040 and global nameplate potash capacity to increase from
                        and factors likely to affect supply and             107.5Mt by the end of 2022, reaching 120Mt by 2040.
                        demand into the future.                         The Company’s current market strategy considers six key target markets in South
Market assessment   A customer and competitor analysis along with           America, Africa and Southern Europe.
                        the identification of likely market windows     MoP prices were based on forecasts from CRU and Integer consulting. The Base Case
                        for the product.                                   sales price is forecast to increase at a compound annual real growth rate of 2.3% per
                    Price and volume forecasts and the basis for           annum from USD260/tonne in 2023 to USD380/tonne in 2040 when equilibrium
                         these forecasts.                                  pricing is forecast by CRU to be reached., The average CIF sales price over the LoM is


                                                                                                                                                            50
Criteria   JORC Code explanation                               Commentary
            For   industrial   minerals     the    customer       forecast at USD341 per tonne of MoP.
                specification, testing and acceptance          Customer specifications are based on K60 product, which means the MoP product has a
                requirements prior to a supply contract.           minimum K2O content of 60%, corresponding to a KCl content of 95%. Product will
                                                                   be sampled regularly on site and tested in a site-based laboratory to ensure product
                                                                   grade is consistently met. Product that does not satisfy grade will be removed from
                                                                   the product stream and reprocessed.
           The inputs to the economic analysis to produce
               the net present value (NPV) in the study, the   Key valuation assumptions and (sources)
               source and confidence of these economic
                                                               Production - LoM of 27 years at nominal 2 Mtpa MoP production, average 1.9 Mtpa MoP
               inputs including estimated inflation,
                                                                   production (DFS; mining and processing).
               discount rate, etc.
                                                               Two MoP product types – Granular (86%) and Standard (14%) (Kore)
           NPV ranges and sensitivity to variations in the
                                                               Average LoM CFR price of USD341/MoP t (CRU/Integer)
              significant assumptions and inputs.
                                                               On-mine LoM average operating cost USD63/MoP t, Real (DFS estimate)
                                                               LoM Shipping (transshipment and sea freight) of USD19/MoP t (LDA and CRU)
                                                               Project capital period 48 months, deferred capital period 25 months, sustaining capital
                                                                   299 months (DFS outcome)
Economic                                                       Total Nominal: Project Capital USD2.0 Bn (excluding EPC mark-up) (DFS estimate)
                                                               Owners Capital 0.1 Bn (Owners estimate)
                                                               Deferred Capital USD76 million (DFS estimate)
                                                               Sustaining Capital USD11/MoP t, Real (DFS estimate)
                                                               Fiscal parameters: Company tax rate (15%), tax holidays (5 years at 0% + 5 years at 7.5%)
                                                                    (Mining Convention)
                                                               Royalties 3% (Mining Convention)
                                                               Government free carry (10%) (Mining Convention)
                                                               Other minor duties and taxes (Mining Convention)
                                                               Working capital: 30 days Debtors and Creditors, 60 days Stores (Kore)
                                                               The DFS Real NPV at real discount rate of 10% is USD631 million (as at 30 June 2019 in

                                                                                                                                                   51
Criteria   JORC Code explanation                            Commentary
                                                               mid-2018 money terms), and Real IRR is 13.4% (excluding EPC Mark-Up*)
                                                             The sensitivity to EPC Mark-up is:
                                                                       EPC Mark-Up                      NPV(10)                        IRR
                                                                           0%                             631                        13.4%
                                                                           5%                             563                        12.9%
                                                                           10%                            494                        12.5%
                                                                           15%                            426                        12.1%
                                                                           20%                            358                        11.7%
                                                                           25%                            290                        11.4%

                                                                *EPC Mark-Up subject to negotiation
                                                            Payback period: 10 years from first capital and 7 years from first production
                                                            Pre-tax margin: 58%.
                                                            Highest sensitivities to Price and Capital. Each percentage movement in Price has an
                                                                approximate USD30 M movement in NPV10, and each percentage movement in
                                                                Project Capital has an approximate USD13 M impact on NPV10.
           The status of agreements with key stakeholders   Approval of an ESIA is a prerequisite for beginning construction of a mining project in the
               and matters leading to social license to        Republic of Congo. The Kola ESIA, initially approved on 10 October 2013, was
               operate.                                        amended to reflect the design changes made to the Kola Project as part of the
                                                               Definitive Feasibility Study (“DFS”) and has been amended to include the service
                                                               corridors for a gas pipeline and overhead power line. The application and terms of
                                                               reference for amending the ESIA were approved on 12 April 2018 by the Minister of
                                                               Tourism and Environment. The amended ESIA approval covers the proposed mining
Social
                                                               and processing of the Kola sylvinite Deposit. The ESIA for the Kola Mining License is
                                                               expected to be approved by the Minister of Tourism and Environment of the
                                                               Republic of Congo shortly through the issuance of a certificate of environmental
                                                               compliance (the “Compliance Certificate”). The Compliance Certificate is renewed
                                                               annually until construction of a mine on the license is completed. The Company shall
                                                               carry out their construction operations in compliance with the environmental and
                                                               social management plan as part of the approved ESIA and will be subject to

                                                                                                                                                  52
Criteria   JORC Code explanation                         Commentary
                                                            Regulator’s environmental management compliance audits. Upon construction
                                                            completion, the Kola project will be subject to the Minister of Tourism and
                                                            Environment’s final approval of the construction activities environmental and social
                                                            management compliance allowing the Company to effectively commission and start
                                                            the mining and processing operations for the export of 2Mtpa from the Kola Mining
                                                            license.
                                                         The Kola Mining License is held within subsidiary which will be owned 10% by the ROC
                                                             government.
                                                         Socio-economic, cultural heritage, archeological and livelihood baseline reports have
                                                             been prepared and approved as part of the ESIA baseline process.
                                                         Sintoukola Potash has implemented a Stakeholder Engagement Process and is actively
                                                             engaging with a wide range of project stakeholders, including conservation NGO's,
                                                             adjacent National Parks, the regulator and communities.
                                                         Three separate land take corridors have been identified, the Service Corridor, includes
                                                             Mine Site, Conveyor Belt and Process Plant, the HV line and the Gas Pipeline:
                                                         For each corridor a declaration d'utilite publique (DUP) has been declared by the
                                                             Ministry of Land Affairs
                                                          Consulting Company RSK undertook a Resettlement Action Plan (RAP) for the Service
                                                             Corridor
                                                         A Resettlement Policy Framework (RPF) was undertaken for the HV and Gas Corridors by
                                                             RSK
                                                         Physical displacement is minimal with most actions requiring livelihood restoration
                                                         Resettlement Costs have been included in owner's costs and time in the implementation
                                                             schedule
                                                         There are believed to be no social related issues that do not have a reasonable likelihood
                                                         of being resolved.
           To the extent relevant, the impact of the     Kola is currently compliant with all legal and regulatory requirements subject to final
Other
              following on the project and / or on the       approval of the Kola Environmental and Social Impact Assessment Amendments


                                                                                                                                               53
Criteria            JORC Code explanation                                Commentary
                        estimation and classification of the Ore            (which was required following the project design changes implemented during the
                        Reserves:                                           DFS) which is expected shortly.
                    Any identified material naturally occurring risks.   A mining convention entered into between the RoC government and the Companies on 8
                    The status of material legal agreements and              June 2017 and gazetted into law on 29 November 2018 concludes the framework
                        marketing arrangements.                              envisaged in the 25-year renewable Kola Mining License granted in August 2013. The
                                                                             Mining Convention provides certainty and enforceability of the key fiscal
                    The status of governmental agreements and
                                                                             arrangements for the development and operation of Kola Mining Licenses, which
                        approvals critical to the viability of the
                                                                             amongst other items include import duty and VAT exemptions and agreed tax rates
                        project, such as mineral tenement status,
                                                                             during mine operations. The Mining Convention provides strengthened legal
                        and government and statutory approvals.
                                                                             protection of the Company’s investments in the Republic of Congo through the
                        There must be reasonable grounds to expect
                                                                             settlement of disputes by international arbitration.
                        that all necessary Government approvals
                        will be received within the timeframes           To the best of the Competent Person’s knowledge, there is no reason to assume any
                        anticipated in the Pre-Feasibility or                government permits and licenses or statutory approvals will not be granted. There
                        Feasibility study. Highlight and discuss the         are no unresolved matters upon which extraction is contingent.
                        materiality of any unresolved matter that is
                        dependent on a third party on which
                        extraction of the reserve is contingent.
                    The basis for the classification of the Ore          Measured Mineral Resources were used for the estimation of the Proved Ore Reserves.
                       Reserves into varying confidence categories.         Indicated Mineral Resources were used for the estimation of Probable Ore Reserves.
                    Whether the result appropriately reflects the        The conversion of Measured and Indicated Mineral Resource to Proved and Probable
Classification         Competent Person’s view of the deposit.               Ore Reserve reflects the Competent Person’s view of the deposit.
                    The proportion of Probable Ore Reserves that         40.6% of the Ore Reserves are classified in the Proved category and 59.4% of the Ore
                        have been derived from Measured Mineral              Reserves are classified in the Probable category
                        Resources (if any).

                    The results of any audits or reviews of Ore          DFS deliverables were continually reviewed by an Owner's Team consisting of an inter-
                        Reserve estimates.                                   discipline engineering team, specialists in ESIA and economic modelling and
Audits or reviews                                                            construction experts.
                                                                         Specialist independent reviews were also conducted for Shaft Design, Process Design,



                                                                                                                                                          54
Criteria                 JORC Code explanation                               Commentary
                                                                                Gas Pipeline, Marine and Transshipment Design and other specialised areas.
                                                                             In addition, Kore utilised specialists from potash operations of SQM in Chile (a
                                                                                 shareholder in Kore) for independent reviews.
                                                                             The DFS outcomes mostly support the PFS results, which were prepared by a different
                                                                                 company in 2012.
                                                                             The Ore Reserve has been peer reviewed and is in line with the current industry
                                                                                 standards.
                         Where appropriate a statement of the relative       In the Competent Person's view, the Kola DFS achieves the required level of confidence
                            accuracy and confidence level in the Ore              in the modifying factors to justify the estimation of an Ore Reserve. All relevant
                            Reserve estimate using an approach or                 modifying factors were considered in the Ore Reserve Estimation and deemed to be
                            procedure deemed appropriate by the                   modelled at a level of accuracy appropriate to the classification, that a global change
                            Competent Person. For example, the                    of greater than 10% considered unlikely
                            application of statistical or geostatistical     The DFS determined a mine plan and production schedule that is technically achievable
                            procedures to quantify the relative accuracy         and economically viable.
                            of the reserve within stated confidence
                                                                             The capital and operating costs are based on the outcome of a definitive feasibility study.
                            limits, or, if such an approach is not deemed
                                                                                 An EPC proposal is due in January 2019 from the French Consortium.
                            appropriate, a qualitative discussion of the
                                                                             Factors that could affect the Ore Reserves locally include; local change in salt-back,
Discussion of relative      factors which could affect the relative
                                                                                 greater dip of the seam in some areas, local changes in the thickness of the rock-salt
accuracy/ confidence        accuracy and confidence of the estimate.
                                                                                 support layer between the seams, areas of unexpected carnallite in floor. The
                         The statement should specify whether it relates
                                                                                 Mineral Resource model attempted to model these features to a high level of detail
                             to global or local estimates, and, if local,
                                                                                 and are ‘passed-on’ into the Ore Reserve and mine plan. The Ore Reserve is also
                             state the relevant tonnages, which should
                                                                                 partially reliant on the model for the thickness of the overlying Anhydrite Member
                             be relevant to technical and economic
                                                                                 which was not part of the Mineral Resource.
                             evaluation. Documentation should include
                                                                             While local variation from the mine plan in the above are expected, is considered
                             assumptions made and the procedures used.
                                                                                 unlikely that these would lead to significant negative change in the Ore Reserves,
                         Accuracy and confidence discussions should
                                                                                 and that positive changes are equally likely.
                             extend to specific discussions of any applied
                                                                             For the DFS, data from a potash mining operation was used to guide and check the
                             modifying factors that may have a material
                                                                                 design, productivity assumptions, cost estimates and budgets. The input data and
                             impact on Ore Reserve viability, or for which


                                                                                                                                                                    55
Criteria   JORC Code explanation                               Commentary
               there are remaining areas of uncertainty at        design are likely to be realistic and achievable in the Competent Persons view.
               the current study stage.
           It is recognized that this may not be possible or
                 appropriate in all circumstances. These
                 statements of relative accuracy and
                 confidence of the estimate should be
                 compared with production data, where
                 available.




                                                                                                                                                    56
                                                                       APPENDIX D
                                        Appendix D: JORC 2012 – Table 1, Sections 1 to 3[1]
                                                    [1]
                                                          Refer to ASX announcement dated 6 July 2017

 Section 1 Sampling Techniques and Data

 (Criteria in this section apply to all succeeding sections.)
Criteria                 JORC Code explanation                                           Commentary
1.1 Sampling             - Nature and quality of sampling (eg cut channels, random       Sampling was carried out according to a strict quality control protocol beginning at
techniques                  chips, or specific specialised industry standard             the drill rig. Holes were drilled to PQ size (85 mm core diameter) core, with a small
                            measurement tools appropriate to the minerals under          number of holes drilled HQ size (63.5 mm core diameter). Sample intervals were
                            investigation, such as down hole gamma sondes, or            between 0.1 and 2.0 metres and sampled to lithological boundaries. All were
                            handheld XRF instruments, etc). These examples should        sampled as half-core except very recent holes (EK_49 to EK_51) which were sampled
                            not be taken as limiting the broad meaning of sampling.      as quarter core. Core was cut using an Almonte© core cutter without water and
                                                                                         blade and core holder cleaned down between samples. Sampling and preparation
                         -   Include reference to measures taken to ensure sample
                                                                                         was carried out by trained geological and technical employees. Samples were
                             representivity and the appropriate calibration of any
                                                                                         individually bagged and sealed.
                             measurement tools or systems used.
                         -   Aspects of the determination of mineralisation that are     A small number of historic holes were used in the Mineral Resource model; K6, K18,
                             Material to the Public Report.                              K19, K20, K21. K6 and K18 were the original holes twinned by the Company in 2010.
                                                                                         The grade data for these holes was not used for the Mineral Resource estimate but
                         -   In cases where ‘industry standard’ work has been done
                                                                                         they were used to guide the seam model. The 2010 twin hole drilling exercise
                             this would be relatively simple (eg ‘reverse circulation
                                                                                         validated the reliability of the geological data for these holes (section 1.7).
                             drilling was used to obtain 1 m samples from which 3 kg
                             was pulverised to produce a 30 g charge for fire assay’).
                                                                                         KCl data for EK_49 to EK_51 was based on the conversion on calibrated API data
                             In other cases more explanation may be required, such as
                                                                                         from downhole geophysical logging, as is discussed in Section 6. Subsequent
                             where there is coarse gold that has inherent sampling
                                                                                         laboratory assay results for EK_49 and EK_51 support the API derived grades.
                             problems. Unusual commodities or mineralisation types
                             (eg submarine nodules) may warrant disclosure of

                                                                                                                                                                         57
Criteria                  JORC Code explanation                                               Commentary
                             detailed information.
1.2 Drilling techniques   -   Drill type (eg core, reverse circulation, open-hole             Holes were drilled by 12 and 8 inch diameter rotary Percussion through the 'cover
                              hammer, rotary air blast, auger, Bangka, sonic, etc) and        sequence', stopping in the Anhydrite Member and cased and grouted to this depth.
                              details (eg core diameter, triple or standard tube, depth       Holes were then advanced using diamond coring with the use of tri-salt (K, Na, Mg)
                              of diamond tails, face-sampling bit or other type, whether      mud to ensure excellent recovery. Coring was PQ (85 mm core diameter) as
                              core is oriented and if so, by what method, etc).               standard and HQ (64.5 mm core diameter) in a small number of the holes.


1.3 Drill sample          -   Method of recording and assessing core and chip sample          Core recovery was recorded for all cored sections of the holes by recording the
recovery                      recoveries and results assessed.                                drilling advance against the length of core recovered. Recovery is between 95 and
                                                                                              100% for the evaporite and all potash intervals, except in EK_50 for the Carnallitite
                          -   Measures taken to maximise sample recovery and ensure
                                                                                              interval in that hole (as grade was determined using API data for that hole this is of
                              representative nature of the samples.
                                                                                              no consequence). The use of tri-salt (Mg, Na, and K) chloride brine to maximize
                          -   Whether a relationship exists between sample recovery           recovery was standard. A fulltime mud engineer was recruited to maintain drilling
                              and grade and whether sample bias may have occurred             mud chemistry and physical properties. Core is wrapped in cellophane sheet soon
                              due to preferential loss/gain of fine/coarse material.          after it is removed from the core barrel, to avoid dissolution in the atmosphere, and
                                                                                              is then transported at the end of each shift to a de-humidified core storage room
                                                                                              where it is stored permanently.


1.4 Logging               -   Whether core and chip samples have been geologically            The entire length of each hole was logged, from rotary chips in the ‘cover sequence’
                              and geotechnically logged to a level of detail to support       and core in the evaporite. Logging is qualitative and supported by quantitative
                              appropriate Mineral Resource estimation, mining studies         downhole geophysical data including gamma, acoustic televiewer images, density
                              and metallurgical studies.                                      and caliper data which correlates well with the geological logging. Due to the
                                                                                              conformable nature of the evaporite stratigraphy and the observed good continuity
                          -   Whether logging is qualitative or quantitative in nature.
                                                                                              and abrupt contacts, recognition of the potash seams is straightforward and made
                              Core (or costean, channel, etc) photography.
                                                                                              with a high degree of confidence. Core was photographed to provide an additional
                          -   The total length and percentage of the relevant                 reference for checking contacts at a later date.
                              intersections logged.
1.5 Sub-sampling          -   If core, whether cut or sawn and whether quarter, half or       Excluding QA-QC samples 2368 samples were analysed at two labs in 44 batches,
techniques and sample         all core taken.                                                 each batch comprising between 20 and 250 samples. Samples were submitted in 46
preparation                                                                                   batches and are from 41 of the 47 holes drilled at Kola. The other 6 drill-holes (EK03,
                          -   If non-core, whether riffled, tube sampled, rotary split, etc
                                                                                              EK_21, EK_25, EK_30, EK_34, EK_37) were either stopped short of the evaporite
                              and whether sampled wet or dry.
                                                                                              rocks or did not intersect potash layers. Sample numbers were in sequence, starting
                          -   For all sample types, the nature, quality and                   with KO-DH-0001 to KO-DH-2650 (EK_01 to EK_44) then KO-DH-2741 to KO-DH-2845


                                                                                                                                                                                58
Criteria               JORC Code explanation                                             Commentary
                          appropriateness of the sample preparation technique.           (EK_46 and EK_47).
                       -   Quality control procedures adopted for all sub-sampling
                                                                                         The initial 298 samples (EK_01 to EK_05) were analysed at K-UTEC in Sondershausen,
                           stages to maximise representivity of samples.
                                                                                         Germany and thereon samples were sent to Intertek-Genalysis in Perth. Samples
                       -   Measures taken to ensure that the sampling is                 were crushed to nominal 2 mm then riffle split to derived a 100 g sample for
                           representative of the in situ material collected, including   analysis. K, Na, Ca, Mg, Li and S were determined by ICP-OES. Cl is determined
                           for instance results for field duplicate/second-half          volumetrically. Insolubles (INSOL) were determined by filtration of the residual
                           sampling.                                                     solution and slurry on 0.45 micron membrane filter, washing to remove residual
                                                                                         salts, drying and weighing. Loss on drying by Gravimetric Determination (LOD/GR)
                       -   Whether sample sizes are appropriate to the grain size of
                                                                                         was also competed as a check on the mass balance. Density was measured (along
                           the material being sampled.
                                                                                         with other methods described in section 3.11) using a gas displacement Pycnometer.



1.6 Quality of assay   -   The nature, quality and appropriateness of the assaying       For drill-holes EK_01 to EK_47, a total of 412 QAQC samples were inserted into the
data and laboratory        and laboratory procedures used and whether the                batches comprising 115 field duplicate samples, 84 blank samples and 213 certified
tests                      technique is considered partial or total.                     reference material (CRM) samples. Duplicate samples are the other half of the core
                                                                                         for the exact same interval as the original sample, after it is cut into two. CRMs were
                       -   For geophysical tools, spectrometers, handheld XRF
                                                                                         obtained from the Bureau of Reference (BCR), the reference material programme of
                           instruments, etc, the parameters used in determining the
                                                                                         the European Commission. Either river sand or later barren Rock-salt was used for
                           analysis including instrument make and model, reading
                                                                                         blank samples. These QA-QC samples make up 17% of the total number of samples
                           times, calibrations factors applied and their derivation,
                                                                                         submitted which is in line with industry norms. Sample chain of custody was secure
                           etc.
                                                                                         from point of sampling to point of reporting.
                       -   Nature of quality control procedures adopted (eg
                           standards, blanks, duplicates, external laboratory checks)    In addition two batches of ‘umpire’ analyses were submitted to a second lab. The
                           and whether acceptable levels of accuracy (ie lack of bias)   first batch comprised 17 samples initially analysed at K-UTEC sent to Intertek-
                           and precision have been established.                          Genalysis for umpire. The second umpire batch comprised 23 samples from Intertek-
                                                                                         Genalysis sent to SRC laboratory in Saskatoon for umpire. They demonstrate
                                                                                         excellent validation of the primary laboratory analyses.

                                                                                         Potash intersections for EK_49 to EK_51 were partially sampled for geotechnical test
                                                                                         work and so were not available in full for chemical analysis. Gamma ray CPS data was
                                                                                         converted to API units which were then converted to KCl % by the application of a
                                                                                         conversion factor known, or K-factor. The geophysical logging was carried out by
                                                                                         independent downhole geophysical logging company Wireline Workshop (WW) of
                                                                                         South Africa, and data was processed by WW. Data collection, data processing and

                                                                                                                                                                           59
Criteria                JORC Code explanation                                           Commentary
                                                                                        quality control and assurance followed a stringent operating procedure. API
                                                                                        calibration of the tool was carried out at a test-well at WW’s base in South Africa to
                                                                                        convert raw gamma ray CPS to API using a coefficient for sonde NGRS6569 of 2.799
                                                                                        given a standard condition of a diameter 150mm bore in fresh water (1.00gm/cc
                                                                                        mud weight).

                                                                                        To provide a Kola-specific field based K-factor, log data were converted via a K-factor
                                                                                        derived from a comparison with laboratory data for drill-holes EK_13, EK_14 and
                                                                                        EK_24. In converting from API to KCl (%), a linear relationship is assumed (no dead
                                                                                        time effects are present at the count rates being considered). In order to remove all
                                                                                        depth and log resolution variables, an ‘area-under-the-curve’ method was used to
                                                                                        derive the K factor. This overcomes the effect of narrow beds not being fully
                                                                                        resolved as well as the shoulder effect at bed boundaries. For this, laboratory data
                                                                                        was converted to a wireline log and all values between ore zones were assigned
                                                                                        zero. A block was created that covered all data and both wireline gamma ray log
                                                                                        (GAMC) and laboratory data log were summed in terms of area under the curves.
                                                                                        From this like-for –like comparison a K factor of 0.074 was calculated. In support if
                                                                                        this factor, it compares well with the theoretical K-factor derived using Schlumberger
                                                                                        API to KCl conversion charts which would be 0.0767 for this tool in hole of PQ
                                                                                        diameter (125 mm from caliper data. As a check on instrument stability over time,
                                                                                        EK_24 is logged frequently. No drift in the gamma-ray data is observed.

                                                                                        As confirmation of the accuracy of the API-derived KCl grades for EK_49 to EK_51,
                                                                                        samples for the intervals that were not taken for geotechnical sampling, were sent to
                                                                                        Intertek-Genalysis for analysis. The results are within 5% of the API-derived KCl and
                                                                                        thickness, and so the latter was used unreservedly for the Mineral Resource
                                                                                        estimation.

1.7 Verification of     -   The verification of significant intersections by either     40 samples of a variety of grades and drill-holes were sent for umpire analysis and as
sampling and assaying       independent or alternative company personnel.               described these support the validity of the original analysis. Other validation comes
                                                                                        from the routine geophysical logging of the holes. Gamma data provides a very
                        -   The use of twinned holes.
                                                                                        useful check on the geology and grade of the potash and for all holes a visual
                        -   Documentation of primary data, data entry procedures,       comparison is made in log form. API data for a selection of holes (EK_05, EK_13,
                            data verification, data storage (physical and electronic)   EK_14, EK_24) were formally converted to KCl grades. In all cases the API derived KCl
                            protocols.                                                  supports the reported intersections.


                                                                                                                                                                          60
Criteria               JORC Code explanation                                            Commentary
                       - Discuss any adjustment to assay data.                          As mentioned above; K6, K18, K19, K20, K21 were used in the geological modelling
                                                                                        but not for the grade estimate. K6 and K18 were twinned in 2010 and the
                                                                                        comparison of the geological data is excellent, providing validation that the
                                                                                        geological information for the aforementioned holes could be used with a high
                                                                                        degree of confidence.


1.8 Location of data   -   Accuracy and quality of surveys used to locate drill holes   A total of 50 Resource related drill-holes have been drilled by the Company; EK_01 to
points                     (collar and down-hole surveys), trenches, mine workings      EK_52. EK_37 and EK_48 were geotechnical holes. Of the 50 Resource holes, 4
                           and other locations used in Mineral Resource estimation.     stopped short above the Salt Member due to drilling difficulties. Of the 46 Resource
                                                                                        holes drilled into the Salt Member, all except 4 contained a significant Sylvinite
                       -   Specification of the grid system used.
                                                                                        intersection.
                       -   Quality and adequacy of topographic control.
                                                                                        The collars of all drill-holes up to EK_47 including historic holes were surveyed by a
                                                                                        professional land surveyor using a DGPS. EK_48 to EK_52 were positioned with a
                                                                                        handheld GPS initially (with elevation from the LIDAR data) and later with a DGPS. All
                                                                                        data is in UTM zone 32 S using WGS 84 datum.

                                                                                        Topography for the bulk of the Mineral Resource area is provided by high resolution
                                                                                        airborne LIDAR (Light Detection and Ranging) data collected in 2010, giving accuracy
                                                                                        of the topography to <200 mm. Beyond this SRTM 90 satellite topographic data was
                                                                                        used. Though of relatively low resolution, it is sufficient as the deposit is an
                                                                                        underground mining project.


1.9 Data spacing and   -   Data spacing for reporting of Exploration Results.           In most cases drill-holes are 1-2 km apart. A small number of holes are much closer
distribution                                                                            such as EK_01 and K18, EK_04 and K6, EK_14 and EK_24 which are between 50 and
                       -   Whether the data spacing and distribution is sufficient to
                                                                                        200 m apart.
                           establish the degree of geological and grade continuity
                           appropriate for the Mineral Resource and Ore Reserve
                           estimation procedure(s) and classifications applied.         The drill-hole data is well supported by 186 km of high frequency closely spaced
                                                                                        seismic data acquired by the Company in 2010 and 2011 that was processed to a
                       -   Whether sample compositing has been applied.
                                                                                        higher standard in 2016. This data provides much guidance of the geometry and
                                                                                        indirectly the mineralogy of the potash seams between and away from the holes, as
                                                                                        well as allowing the delineation of discontinuities affecting the potash seams. The
                                                                                        combination of drill-hole data and the seismic data supports geological modelling
                                                                                        with a level of confidence appropriate for the classification assigned to the

                                                                                                                                                                         61
Criteria               JORC Code explanation                                             Commentary
                                                                                         Measured, Indicated and Inferred sections of the deposit. The seismic data is
                                                                                         described in greater detail below.

                                                                                         Two sources of seismic data were used to support the Mineral Resource model:
                                                                                            1) Historical oil industry seismic data of various vintage and acquired by
                                                                                                 several companies, between 1989 and 2006. The data is of low frequency
                                                                                                 and as final SEG-Y files as PreStack Time Migrated (PreSTM) form. Data was
                                                                                                 converted to depth by applying a velocity to best tie the top-of-salt reflector
                                                                                                 with drill-hole data. The data allows the modelling of the top of the Salt
                                                                                                 Member (base of the Anhydrite Member) and some guidance of the
                                                                                                 geometry of the layers within the Salt Member.

                                                                                             2) The Company acquired 55 lines totaling 185.5 km of data (excluding gaps on
                                                                                                two lines) in 2010 and 2011. These surveys provide high frequency data
                                                                                                specifically to provide quality images for the relatively shallow depths
                                                                                                required (surface to approximately 800 m). Data was acquired on strike (tie
                                                                                                lines) and dip lines. Within the Measured Mineral Resource area lines are
                                                                                                between 100 and 200 m apart. Data was re-processed in 2016, for the 2017
                                                                                                Mineral Resource update, by DMT Petrologic GmbH (DMT) of Germany.
                                                                                                DMT worked up the raw field data to poststack migration (PoSTM) and
                                                                                                PreSTM format. By an iterative process of time interpretation of known
                                                                                                reflectors (with reference to synthetic seismograms) the data was
                                                                                                converted to Prestack depth migrated (PSDM) form. Finally, minor
                                                                                                adjustments were made to tie the data exactly with the drill-hole data.

                                                                                         The Competent Person reviewed the seismic data and processing and visited DMT in
                                                                                         Germany for meetings around the final delivery of the data to the Company.


1.10 Orientation of    -   Whether the orientation of sampling achieves unbiased         All exploration drill-holes were drilled vertically and holes were surveyed to check for
data in relation to        sampling of possible structures and the extent to which       deviation. In almost all cases tilt was less than 1 degree (from vertical). Dip of the
geological structure       this is known, considering the deposit type.                  potash seam intersections ranges from 0 to 45 degrees with most dipping 20 degrees
                                                                                         or less. All intersections with a dip of greater than 15 degrees were corrected to
                       -   If the relationship between the drilling orientation and
                                                                                         obtain the true thickness, which was used for the creation of the Mineral Resource
                           the orientation of key mineralised structures is considered
                                                                                         model.
                           to have introduced a sampling bias, this should be


                                                                                                                                                                            62
Criteria                 JORC Code explanation                                            Commentary
                            assessed and reported if material.
1.11 Sample security     -   The measures taken to ensure sample security.                At the rig, the core is under full time care of a Company geologist and end of each
                                                                                          drilling shift, the core is transported by Kore Potash staff to a secure site where it is
                                                                                          stored within a locked room. Sampling is carried out under the fulltime watch of
                                                                                          Company staff; packed samples are transported directly from the site by Company
                                                                                          staff to DHL couriers in Pointe Noire 3 hours away. From here DHL airfreight all
                                                                                          samples to the laboratory. All core remaining at site is stored is wrapped in plastic
                                                                                          film and sealed tube bags, and within an air-conditioned room (17-18 degrees C) to
                                                                                          minimize deterioration.
1.12 Audits or reviews   -   The results of any audits or reviews of sampling             The Competent Person has visited site to review core and to observe sampling
                             techniques and data.                                         procedures. As part of the Mineral Resource estimation, the drill-hole data was
                                                                                          thoroughly checked for errors including comparison of data with the original
                                                                                          laboratory certificates; no errors were found.



 Section 2 Reporting of Exploration Results

 (Criteria listed in the preceding section also apply to this section.)

Criteria                 JORC Code explanation                                            Commentary
2.1 Mineral tenement      Type, reference name/number, location and ownership            The Kola deposit is within the Kola Mining Lease which is held 100% under the local
and land tenure status   -   including agreements or material issues with third parties    company Kola Mining SARL which is in turn held 100% by Sintoukola Potash SA RoC,
                            such as joint ventures, partnerships, overriding royalties,   of which Kore Potash holds a 97% share. The lease was issued August 2013 and is
                            native title interests, historical sites, wilderness or       valid for 25 years. There are no impediments on the security of tenure.
                            national park and environmental settings.
                         -   The security of the tenure held at the time of reporting
                             along with any known impediments to obtaining a licence
                             to operate in the area.
2.2 Exploration done     -   Acknowledgment and appraisal of exploration by other         Potash exploration was carried out in the area in the1960's by Mines de Potasse d’
by other parties            parties.                                                     Alsace S.A in the 1960’s. Holes K6, K18, K19, K20, K21 are in the general area. K6 and
                                                                                          K18 are within the deposit itself and both intersected Sylvinite of the Upper and
                                                                                          Lower Seam; it was the following up of these two holes by Kore Potash (then named
                                                                                          Elemental Minerals) that led to the discovery of the deposit in 2012.


                                                                                                                                                                              63
Criteria      JORC Code explanation                               Commentary

                                                                  Oil exploration in the area has taken place intermittently from the 1950’s onwards
                                                                  by different workers including British Petroleum, Chevron, Morel et Prom and
                                                                  others. Seismic data collected by some of these companies was used to guide the
                                                                  evaporite depth and geometry within the Inferred Mineral Resource area. Some oil
                                                                  wells have been drilled in the wider area such as Kola-1 and Nkoko-1.
2.3 Geology   -   Deposit type, geological setting and style of   The potash seams are hosted by the 300-900 m thick Lower Cretaceous-aged (Aptian
                  mineralisation.                                 age) Loeme Evaporite formation These sedimentary evaporite rocks belong to the
                                                                  Congo (Coastal) Basin which extends from the Cabinda enclave of Angola to the
                                                                  south well into Gabon to the north, and from approximately 50 km inland to some
                                                                  200-300 km offshore. The evaporites were deposited between 125 and 112 million
                                                                  years ago, within a post-rift ‘proto Atlantic’ sub-sea level basin following the break-
                                                                  up of Gondwana forming the Africa and South America continents.


                                                                  The evaporite is covered by a thick sequence of carbonate rocks and clastic
                                                                  sediments of Cretaceous age to recent (Albian to Miocene), referred to as the ‘Cover
                                                                  Sequence’, which is between 170 and 270 m thick over the Kola deposit. The lower
                                                                  portion of this Cover Sequence is comprised of dolomitic rocks of the Sendji
                                                                  Formation. At the top of the Loeme Formation, separating the Cover Sequence and
                                                                  the underlying Salt Member is a layer of anhydrite and clay typically between 5 and
                                                                  15 m thick and referred to as the Anhydrite Member. At Kola, this layer rests un-
                                                                  conformably over the Salt-Member, as described in more detail below.

                                                                  Within the Salt Member, ten sedimentary-evaporative cycles (I to X) are recognized
                                                                  with a vertical arrangement of mineralogy consistent with classical brine-evolution
                                                                  models; potash being close to the top of cycles. The Salt Member and potash layers
                                                                  formed by the seepage of brines into an extensive sub sea-level basin. Evaporation
                                                                  resulted in precipitation of evaporite minerals over a long period of time, principally
                                                                  halite (NaCl), carnallite (KMgCl3·6H2O) and bischofite (MgCl2·6H2O), which account
                                                                  for over 90% of the evaporite rocks. Sylvinite formed by the replacement of
                                                                  Carnallitite within certain areas. Small amounts of gypsum, anhydrite, dolomite and
                                                                  insoluble material (such as clay, quartz, organic material) is present, typically
                                                                  concentrated in relatively narrow layers at the base of the cycles (interlayered with
                                                                  Rock-salt), providing useful ‘marker’ layers. The layers making up the Salt Member


                                                                                                                                                    64
Criteria   JORC Code explanation   Commentary
                                   are conformable and parallel or sub-parallel and of relatively uniform thickness
                                   across the basin, unless affected by some form of discontinuity.

                                   There are upwards of 100 potash layers within the Salt Member ranging from 0.1 m
                                   to over 10 m in thickness. The Kola deposit is hosted by 4 seams within cycles 7, 8
                                   and 9, from uppermost these are; Hangingwall Seam (HWS), Upper Seam (US), Lower
                                   Seam (LS), Footwall Seam (FWS). Seams are separated by Rock-salt.

                                   Individual potash seams are stratiform layers that can be followed across the basin
                                   are of Carnallitite except where replaced by Sylvinite, as is described below. The
                                   potash mineralogy is simple; no other potash rock types have been recognized and
                                   Carnallitite and Sylvinite are not inter-mixed. The seams are consistent in their
                                   purity; all intersections of Sylvinite are comprised of over 97.5% euhedral or
                                   subhedral halite and sylvite of medium to very coarse grainsize (0.5 mm to equal to or larger than 5 mm).
                                   Between 1.0 and 2.5% is comprised of anhydrite (CaSO4) and a lesser amount of
                                   insoluble material. At Kola the potash layers are flat or gently dipping and at depths
                                   of between 190 and 340 m below surface.

                                   The contact between the Anhydrite Member and the underlying salt is an
                                   unconformity and due to the undulation of the layers within the Salt Member at
                                   Kola, the thickness of the salt member beneath this contact varies. This is the
                                   principal control on the extent and distribution of the seams at Kola and the reason
                                   why the uppermost seams such as the Hangingwall Seam are sometimes absent, and
                                   the lower seams such as the Upper and Lower Seam are preserved over most of the
                                   deposit.

                                   The most widely distributed Sylvinite seams at Kola are the US and LS, hosted within
                                   cycle 8 of the Salt Member. These seams have an average grade of 35.5 and 30.5 %
                                   KCl respectively and average 3.7 and 4.0 m thick. The Sylvinite is thinned in proximity
                                   to leached zones or where they ‘pinch out’ against Carnallitite. They are separated
                                   by 2.5-4.5 m thick Rock-salt layer referred to as the interburden halite (IBH). Sylvinite
                                   Hangingwall Seam is extremely high grade (55-60% KCl) but is not as widely
                                   preserved as the Upper and Lower Seam being truncated by the Anhydrite Member
                                   over most of the deposit. Where it does occur it is approximately 60 m above the
                                   Upper Seam and is typically 2.5 to 4.0 m thick. The Top Seams are a collection of


                                                                                                                       65
Criteria   JORC Code explanation   Commentary
                                   narrow high grade seams 10-15 m above the Hangingwall Seam but are not
                                   considered for extraction at Kola as they are absent (truncated by the Anhydrite
                                   Member) over almost all of the deposit.

                                   The Footwall Seam occurs 45 to 50 m below the Lower Seam. The mode of
                                   occurrence is different to the other seams in that it is not a laterally extensive seam,
                                   but rather elongate lenses with a preferred orientation, formed not by the
                                   replacement of a seam, but by the ‘accumulation’ of potassium at a particular
                                   stratigraphic position. It forms as lenses of Sylvinite up to 15 m thick and always
                                   beneath areas where the Upper and Lower seam have been leached. It is considered
                                   a product of re-precipitation of the leached potassium, into pre-existing Carnallitite-
                                   Bischofitite unit at the top of cycle 7.
                                   The insoluble content of the seams and the Rock-salt immediately above and below
                                   them is uniformly low (<0.2%) except for the FWS which has an average insoluble
                                   content of 1%. Minor anhydrite is present throughout the Salt Member, as 0.5-3 mm
                                   thick laminations but comprise less than 2.5% of the rock mass of the potash layers.

                                   Reflecting the quiescence of the original depositional environment, the Sylvinite
                                   seams exhibit low variation in terms of grade, insoluble content, magnesium
                                   content; individual sub-layers and mm thick laminations within the seams can be
                                   followed across the deposit. The grade profile of the seams is consistent across the
                                   deposit except for the FWS; the US is slightly higher grade at its base, the LS slightly
                                   higher grade at its top. The HWS is 50 to 60% sylvite (KCl) throughout. The FWS,
                                   forming by introduction of potassium and more variable mode of formation has a
                                   higher degree of grade variation and thickness.

                                   The original sedimentary layer and ‘precursor’ potash rock type is Carnallitite and is
                                   preserved in an unaltered state in many holes drill-holes, especially of LS and in
                                   holes that are lateral to the deposit. It is comprised of the minerals carnallite
                                   (KMgCl3·6H2O), halite (NaCl) (these two minerals comprise 97.5% of the rock) and
                                   minor anhydrite and insolubles (<2.5%). The Carnallitite is replaced by Sylvinite by a
                                   process of ‘outsalting’ whereby brine (rich in dissolved NaCl) resulted in the
                                   dissolution of carnallite, and the formation of new halite (in addition to that which
                                   may already be present) and leaving residual KCl precipitating as sylvite. This
                                   ‘outsalting’ process produced a chloride brine rich in Mg and Na, which presumably


                                                                                                                      66
Criteria   JORC Code explanation   Commentary
                                   continued filtering down and laterally through the Salt Member.

                                   The grade of the Sylvinite is proportional to the grade of the precursor Carnallitite.
                                   For example, in the case of the HWS when Carnallitite is 90 percent carnallite (and
                                   grades between 24 and 25 percent KCl), if all carnallite was replaced by sylvite the
                                   resulting Sylvinite would theoretically be 70.7 percent (by weight) sylvite. However,
                                   as described above the inflowing brine introduced new halite into the potash layer,
                                   reducing the grade so that the final grade of the Sylvinite of layer 3/IX is between 50
                                   and 60 percent KCl (sylvite).

                                   Importantly, the replacement of Carnallitite by Sylvinite advanced laterally and
                                   always in a top-down sense within the seam. This Sylvinite-Carnallitite transition
                                   (contact) is observed in core and is very abrupt. Above the contact the rock is
                                   completely replaced (Sylvinite with no carnallite) and below the contact the rock is
                                   un-replaced (Carnallitite with no sylvite). In many instances the full thickness of the
                                   seam is replaced by Sylvinite, in others the Sylvinite replacement advanced only
                                   part-way down through the seam. Carnallitite is reliably distinguished from Sylvinite
                                   based on any one of the following:

                                       -    Visually: Carnallitite is orange, Sylvinite is orange-red or pinkish-red in
                                            colour and less vibrant.
                                       -    Gamma data: Carnallitite < 350 API, Sylvinite >350 API
                                       -    Magnesium data: Sylvinite at Kola does not contain more than 0.1% Mg.
                                            Instances of up to 0.3% Mg within Sylvinite explained by 1-2 cm of
                                            Carnallitite included in the lowermost sample where underlain by
                                            Carnallitite. Carnallitite contains upwards to 5% Mg.
                                       -    Acoustic televeiwer and caliper data clearly identify Carnallitite from
                                            Sylvinite.

                                   Based on the ‘stage’ of replacement, 5 seam types are recognized. The replacement
                                   process was extremely effective, no mixture of Carnallitite and Sylvinite is observed,
                                   and within a seam, Carnallitite is not found above Sylvinite.

                                   It is thought that over geological time groundwater and/or water released by the

                                                                                                                     67
Criteria   JORC Code explanation   Commentary
                                   dehydration of gypsum (during conversion to anhydrite in the Anhydrite Member)
                                   infiltrated the Salt Member under gravity, centred on areas of ‘relatively disturbed
                                   stratigraphy’ referred to as RDS zones (not to be confused with subsidence
                                   anomalies, see section 3.5). In these areas the salt appears to be gently undulating
                                   over broad zones, or forms more discrete strike extensive gentle antiformal features.
                                   There appears to be a correlation of these areas with small amounts undulation of
                                   the overlying strata and the Salt Member, and thickening of the Bischofitite at the
                                   top of Cycle 7 (some 45-50 m below the LS). The cause of the undulation appears to
                                   be related to immature salt-pillowing.

                                   The process of sylinite formation appears to have been very gradual and non-
                                   destructive; where leached, the salt remains in-tact and layering is preserved. Brine
                                   or voids are not observed. Fractures within the Salt Member appear to be restricted
                                   to areas of localized subsidence, as observed in potash deposits mined elsewhere,
                                   and described in more detail in section 3.5.

                                   Within and lateral to the RDS zones, brine moved downward then laterally,
                                   preferentially along the thicker higher porosity Carnallitite layers, replacing the
                                   carnallite with sylvite (as described in preceding text) 10s to 100’s metres laterally
                                   and to a depth of 80-90 m below the Anhydrite Member. Beyond the zone affected
                                   by sylvite replacement, the potash is of unaltered primary Carnallitite. In the
                                   intermediate zone, the lower part of the layer may not be replaced supporting a
                                   lateral then ‘top-down’ replacement of the seams. For the most part the US is ‘full’
                                   (fully replaced by Sylvinite), and the LS more often than not is Carnallitite especially
                                   within synformal areas giving rise to pockets or troughs of Carnallitite. The HWS,
                                   being close to the anhydrite is only preserved in synformal areas where it is always
                                   Sylvinite (being close to the top of the Salt Member), or lateral to the main deposit
                                   where it is likely to be Carnallitite, relating to the broader control on the zone of
                                   Sylvinite formation discussed below.

                                   Some of the longer seismic lines show that the relative disturbance of the salt over
                                   much of Kola relates to the ‘elevation’ of the stratigraphy due to the formation of a
                                   northwest-southeast orientated horst block, bound either side by half-graben. The
                                   horst block referred to as the ‘Kola High’ and is approximately 8 km wide and at least
                                   20 km in length. Lateral to this ‘high’ Sylvinite is rarely found except immediately


                                                                                                                      68
Criteria               JORC Code explanation                                                Commentary
                                                                                            beneath (within 5-10 m of) the Anhydrite Member.


2.4 Drill hole         -   A summary of all information material to the                     All drill-hole collar information for holes relevant to the Mineral Resource estimate
Information                understanding of the exploration results including a             was provided in Error! Reference source not found. of the announcement
                           tabulation of the following information for all Material         (dated 6 July 2017), including historic holes. Hydrological drill-holes are excluded as
                           drill holes:                                                     they were drilled to a shallow depth. All holes except one were drilled vertically and
                                                                                            deflection from this angle was less than 3 degrees for almost all holes. Holes were
                           o easting and northing of the drill hole collar
                                                                                            surveyed with a gyroscope or magnetic deviation tool to obtain downhole survey
                           o elevation or RL (Reduced Level – elevation above sea           data.
                             level in metres) of the drill hole collar
                           o dip and azimuth of the hole
                           o down hole length and interception depth
                           o hole length.
                       -   If the exclusion of this information is justified on the basis
                           that the information is not Material and this exclusion
                           does not detract from the understanding of the report,
                           the Competent Person should clearly explain why this is
                           the case.
2.5 Data aggregation   -   In reporting Exploration Results, weighting averaging            For the calculation of the grade over the full thickness of the seams, the standard
methods                    techniques, maximum and/or minimum grade truncations             ‘length-weighted’ compositing method was used to combine individual results within
                           (eg cutting of high grades) and cut-off grades are usually       each seam intersection.
                           Material and should be stated.
                                                                                            No selective cutting of high or low grade material was carried out as it is not justified
                       -   Where aggregate intercepts incorporate short lengths of
                                                                                            given the massive nature of the potash mineralization and absence of the localised
                           high grade results and longer lengths of low grade
                                                                                            high/low grade areas.
                           results, the procedure used for such aggregation should
                           be stated and some typical examples of such
                                                                                            Results for short lengths of high grade material included in the Mineral Resource
                           aggregations should be shown in detail.
                                                                                            Estimate are justifiable based on their lateral continuity. They were included in the
                       -   The assumptions used for any reporting of metal                  full seam grade by standard ‘length-weighted’ compositing.
                           equivalent values should be clearly stated.
                                                                                            No metal equivalents were calculated.



                                                                                                                                                                                69
Criteria                 JORC Code explanation                                             Commentary
2.6 Relationship         - These relationships are particularly important in the           All mineralised intersections where the dip of the seam is 15 degrees or greater were
between                     reporting of Exploration Results.                              corrected to obtain true thickness which was used in the Mineral Resource Estimate.
mineralisation widths
                         -   If the geometry of the mineralisation with respect to the
and intercept lengths
                             drill hole angle is known, its nature should be reported.
                         -   If it is not known and only the down hole lengths are
                             reported, there should be a clear statement to this effect
                             (eg ‘down hole length, true width not known’).
2.7 Diagrams             -   Appropriate maps and sections (with scales) and               The original announcement (dated 6 July 2017) included appropriate maps and
                             tabulations of intercepts should be included for any          sections.
                             significant discovery being reported These should include,
                             but not be limited to a plan view of drill hole collar
                             locations and appropriate sectional views.
2.8 Balanced reporting   -   Where comprehensive reporting of all Exploration Results      Not relevant to the reporting of the Mineral Resource Estimate.
                             is not practicable, representative reporting of both low
                             and high grades and/or widths should be practiced to
                             avoid misleading reporting of Exploration Results.
2.9 Other substantive    -   Other exploration data, if meaningful and material,           All substantive data has been reported herein.
exploration data             should be reported including (but not limited to):
                             geological observations; geophysical survey results;
                             geochemical survey results; bulk samples – size and
                             method of treatment; metallurgical test results; bulk
                             density, groundwater, geotechnical and rock
                             characteristics; potential deleterious or contaminating
                             substances.
2.10 Further work        -   The nature and scale of planned further work (eg tests for    The exploration database should be updated with the most recent drilling data. No
                             lateral extensions or depth extensions or large-scale step-   other further work is necessary at this time. If conversion of Indicated resources to
                             out drilling).                                                Measured and Inferred to Indicated Mineral Resource is deemed important,
                                                                                           additional seismic data would need to be acquired. Furthermore, the deposit is open
                         -   Diagrams clearly highlighting the areas of possible
                                                                                           laterally, in places to the west and east (though in the case of the latter is limited by
                             extensions, including the main geological interpretations
                                                                                           the Mining Lease boundary) and probably to the greatest extent to the southeast,
                             and future drilling areas, provided this information is not
                                                                                           along the strike of the Kola High. Additional drilling and seismic data may allow the
                             commercially sensitive.
                                                                                           delineation of additional resources in these areas, if results of the work are positive.


                                                                                                                                                                               70
Criteria                 JORC Code explanation                                             Commentary




 Section 3 Estimation and Reporting of Mineral Resources

 (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria                 JORC Code explanation                                             Commentary
3.1 Database integrity   - Measures taken to ensure that data has not been                 Geological data is collected in hardcopy then captured digitally by data entry. All
                            corrupted by, for example, transcription or keying errors,     entries are thoroughly checked. During import into Micromine© software, an error
                            between its initial collection and its use for Mineral         file is generated identifying any overlapping intervals, gaps and other forms of error.
                            Resource estimation purposes.                                  The data is then compared visually in the form of strip logs against geophysical data.
                                                                                           Laboratory data was imported into an Access database using an SQL driven software,
                         -   Data validation procedures used.
                                                                                           to sort QA-QC samples and a check for errors is part of the import. Original
                                                                                           laboratory result files are kept as a secure record. For the Mineral Resource model a
                                                                                           ‘stratigraphic file’ was generated, as synthesis of key geological units, based on
                                                                                           geological, geophysical and assay data. The stratigraphic file was then used as a key
                                                                                           input into the Mineral Resource model; every intersection and important contact
                                                                                           was checked and re-checked, by visual comparison with the other data types in log
                                                                                           format. Kore Potash is in the process of creating an updated database, to include the
                                                                                           most recent geology and assay data.

                                                                                           For the process of setting up a Mineral Resource database, Met-Chem division of
                                                                                           DRA Americas Inc., a subsidiary of the DRA Group underwent a rigorous exercise of
                                                                                           checking the database, including a comparison with the original laboratory
                                                                                           certificates. Once an explanation of the files had had been provided, no errors were
                                                                                           found with the assay or stratigraphic data, or with the other data types imported
                                                                                           (collar, survey, geophysics). The database is considered as having a high degree of
                                                                                           integrity.


3.2 Site visits          -   Comment on any site visits undertaken by the Competent        The Competent Person visited the project from the 5-7 November 2016 to view drill-
                             Person and the outcome of those visits.                       hole sites, the core shed and sample preparation area. Explanation of all procedures
                                                                                           were provided by the Company, and a procedural document for core logging,
                         -   If no site visits have been undertaken indicate why this is
                                                                                           marking and sampling reviewed. Time was spent reviewing core and hard copy
                             the case.
                                                                                           geological logs. All was found to meet or exceed the industry standards.

                                                                                                                                                                             71
Criteria         JORC Code explanation                                        Commentary


3.3 Geological   -   Confidence in (or conversely, the uncertainty of ) the   Recognition and correlation of potash and other important layers or contacts
interpretation       geological interpretation of the mineral deposit.        between holes is straightforward and did not require assumptions to be made, due
                                                                              the continuity and unique characteristics of each of the evaporite layers; each being
                 -   Nature of the data used and of any assumptions made.
                                                                              distinct when thickness, grade and grade distribution, and stratigraphic position
                 -   The effect, if any, of alternative interpretations on    relative to other layers is considered. Further support is provided by the reliable
                     Mineral Resource estimation.                             identification of ‘marker’ units within and at the base of the evaporite cycles.
                                                                              Correlation is further aided by the downhole geophysical data clearly shows changes
                 -   The use of geology in guiding and controlling Mineral
                                                                              in mineralogy of the evaporite layers and is used to validate or adjust the core
                     Resource estimation.
                                                                              logged depths of the important contacts. The abrupt nature of the contacts,
                 -   The factors affecting continuity both of grade and       particularly between the Rock-salt, Sylvinite and Carnallitite contributes to above.
                     geology.
                                                                              Between holes the seismic interpretation is the key control in the form and extent of
                                                                              the Sylvinite, in conjunction with the application of the geological model. The
                                                                              controls on the formation of the Sylvinite is well understood and the ‘binary’ nature
                                                                              of the potash mineralization allows an interpretation with a degree of confidence
                                                                              that relates to the support data spacing, which in turn is reflected in the
                                                                              classification. In this regard geology was relied upon to guide and control the model,
                                                                              as described in detail section 3.5. Alternative interpretations were tested as part of
                                                                              the modeling process but generated results that do not honor the drill-hole data as
                                                                              well as the adopted model.

                                                                              The following features affect the continuity of the Sylvinite or Carnallitite seams, all
                                                                              of which are described further in Section 3.5. By using the seismic data and the drill-
                                                                              hole data, the Mineral Resource model captures the discontinuities with a level of
                                                                              confidence reflected in the classification.
                                                                                   • where the seams are truncated by the anhydrite
                                                                                   • where the Sylvinite pinches out becoming Carnallitite or vice versa
                                                                                   • areas where the seams are leached within zones of subsidence
                                                                              Outside of these features, grade continuity is high reflecting the small range in
                                                                              variation of grade of each seam, within each domain. Further description of grade
                                                                              variation is provided in later in text.




                                                                                                                                                                 72
Criteria               JORC Code explanation                                             Commentary
3.4 Dimensions         - The extent and variability of the Mineral Resource              In its entirety, the deposit is 14 km in length (deposit scale strike) and 9 km in width.
                          expressed as length (along strike or otherwise), plan          The shallowest point of the upper most Sylvinite (of the HWS) is approximately 190
                          width, and depth below surface to the upper and lower          metres below surface. The depth to the deepest Sylvinite (of the FWS) is
                          limits of the Mineral Resource.                                approximately 340 metres below surface. The thickness of the seams was
                                                                                         summarized in Table 3 of the original announcement (dated 6 July 2017).
3.5 Estimation and     -   The nature and appropriateness of the estimation              Error! Reference source not found. and Error! Reference source not
modelling techniques       technique(s) applied and key assumptions, including           found. of the original announcement (dated 6 July 2017) provide the Mineral
                           treatment of extreme grade values, domaining,                 Resource for Sylvinite and Carnallitite at Kola. This Mineral Resource replaces that
                           interpolation parameters and maximum distance of              dated 21 August 2012, prepared by CSA Global Pty Ltd. This update incorporates
                           extrapolation from data points. If a computer assisted        reprocessed seismic data and additional drilling data. Error! Reference source
                           estimation method was chosen include a description of         not found. and Error! Reference source not found. of the original
                           computer software and parameters used.                        announcement (dated 6 July 2017) provide the Sylvinite and Carnallitite Mineral
                                                                                         Resource from 2012. The updated Measured and Indicated Mineral Resource
                       -   The availability of check estimates, previous estimates
                                                                                         categories are not materially different from the 2012 estimate and is of slightly
                           and/or mine production records and whether the Mineral
                                                                                         higher grade. The Inferred category has reduced due to the reduction in the FWSS
                           Resource estimate takes appropriate account of such
                                                                                         tonnage, following the updated interpretation of it being present within relatively
                           data.
                                                                                         narrow lenses that are more constrained than in the previous interpretation. There
                       -   The assumptions made regarding recovery of by-                is no current plan to consider the FWSS as a mining target and so the reduction in
                           products.                                                     FWSS tonnage is of no consequence to the project’s viability.
                       -   Estimation of deleterious elements or other non-grade
                           variables of economic significance (eg sulphur for acid       As described in section 3.3, the spatial application of the geological model was
                           mine drainage characterisation).                              central to the creation of the Mineral Resource model. Geological controls were
                                                                                         used in conjunction with the seismic data interpretation. The process commenced
                       -   In the case of block model interpolation, the block size in
                                                                                         with the interpretation of the depth migrated drill-hole-tied seismic data in
                           relation to the average sample spacing and the search
                                                                                         Micromine 2013 © involving the following. Error! Reference source not found.
                           employed.
                                                                                         of the original announcement (dated 6 July 2017) provides an explanation of
                       -   Any assumptions behind modelling of selective mining          abbreviations used in text.
                           units.
                                                                                             1.   Interpretation of the base of anhydrite surface or salt roof (SALT_R) which is
                       -   Any assumptions about correlation between variables.
                                                                                                  typically a distinct seismic event.
                       -   Description of how the geological interpretation was used         2.   Interpretation of base of salt, the ‘intra-salt marker’ and ‘base cycle 8’
                           to control the resource estimates.                                     (BoC8) markers. Based on synthetic seismograms the latter is a negative
                                                                                                  event picking out the contrast between the top of the Cy78 and overlying
                       -   Discussion of basis for using or not using grade cutting or
                                                                                                  Rock-salt.


                                                                                                                                                                              73
Criteria   JORC Code explanation                                           Commentary
              capping.
                                                                           Using Leapfrog Geo 4.0 (Leapfrog) surfaces were created for the SALT_R and BoC8 .
           -   The process of validation, the checking process used, the
                                                                           In doing so, an assessment of directional control on the surfaces was made;
               comparison of model data to drill hole data, and use of
                                                                           following the observation based on the sectional interpretation a WNW-ESE ‘strike’
               reconciliation data if available.
                                                                           is evident. Experimental semi-variograms were calculated for the surface elevation
                                                                           values at 10° azimuth increments. All experimental semi-variograms were plotted;
                                                                           100° and 10° produce good semi-variograms for the directions of most and least
                                                                           continuity respectively. This directional control was adopted for the modelling of
                                                                           surfaces, created in Leapfrog on a 20 by 20 m ‘mesh’ using a 2:1 ellipsoid ratio (as
                                                                           indicated by the semi-variogram ranges).

                                                                           The following steps were then carried out:
                                                                               1. The BoC8 surface was projected up to the position of the Upper Seam roof
                                                                                    (US_R) by ‘gridding’ the interval between these units from drill-hole data.
                                                                                    On seismic lines, The US_R interpretation was then adjusted to fit reflectors
                                                                                    at that position, taking into account interference features common in the
                                                                                    data in the Salt Member close to the SALT_R
                                                                               2. In all cases drill-hole intersections were honored. In addition to USS and
                                                                                    USC intersections, the small number of leached US intersections, all within
                                                                                    subsidence zones) were used to guide the seam model.
                                                                               3. The new US_R interpretation along seismic lines, was then ‘gridded’ in
                                                                                    Leapfrog, also into a mesh of 20 m by 20 m resolution making use of the
                                                                                    100° directional control and 2:1 anisotropy, to create a new US_R surface.

                                                                           The Mineral Resource model has two potash domains in order to represent the
                                                                           geology I.e. Sylvinite or Carnallitite. A third non-potash domain areas of leaching
                                                                           and/or subsidence as described in the following text. Using the reference horizons
                                                                           the Sylvinite and Carnallitite seam model was developed as follows:

                                                                               1.   The US_R surface was fixed as the reference horizon for the modelling of
                                                                                    the US, LS and HWS. The US_R surface was imported into Datamine Studio 3
                                                                                    (Datamine), using the same 20 by 20 m cells as described above.
                                                                               2.   The US Sylvinite (USS) model was developed by analyzing the position of the
                                                                                    cell in relation to the SALT_R and to the RDS zones. The latter were
                                                                                    interpreted from seismic data. As described in section 2.3 these attributes


                                                                                                                                                            74
Criteria   JORC Code explanation   Commentary
                                         are the main geological controls.
                                      3. To a lesser extent the dip of the seam and the relative elevation of each cell,
                                         relative to the cells within a 100 by 100 m area were also considered, to
                                         further identify Sylvinite with the understanding that areas of very low dip
                                         are more likely to be of Carnallitite.
                                      4. Beyond the 2010/2011 seismic data (within the Indicated Mineral Resource
                                         area) the influence of the distance from RDS zones was reduced and the
                                         proximity to the SALT_R and the dip and relative elevation were assigned
                                         greater consideration.
                                      5. Seam thickness of the USS was determined by gridding the drill-hole data of
                                         the full Sylvinite intersections (excluding those that have a Carnallitite basal
                                                                                                      2
                                         layer or are leached) using Inverse distance squared (IDW ) and adjusting it
                                         to account for the influence of 2 and 3 above. The Sylvinite thickness was
                                         then subtracted from the elevation of the US_R to create the USS floor
                                         (USS_F), on the 20m by 20m mesh.
                                      6. Only the true thickness of drill-hole intersections were used (i.e. corrections
                                         for any dip were made) for the above. As the seam model thickness
                                         developed in a vertical sense, areas of the model with a dip were corrected
                                         so that the true thickness was always honored.
                                      7. Even if the USS has zero thickness the surface for the USS_F was created,
                                         overlying exactly that of the US_R to facilitate the creation of DTMs for each
                                         surface.
                                      8. The same method (effectively the inverse) was applied to create the US
                                         Carnallitite model (USC) below the USS. The roof of the USC (USC_R) is the
                                         same surface as the USS_F.
                                      9. A number of iterations of the model were produced and assessed. The
                                         selected model was the one that produced a result that ties well with the
                                         drill-hole data and honors the proportional abundance of Sylvinite as
                                         intersected in the drill-holes.

                                   The Lower Seam model was created in a similar manner as follows:

                                       1.   The LS is separated by between 2 and 6 metres of barren Rock-salt, also
                                            referred to as the Interburden-halite or IBH. This layer is an important
                                            geotechnical consideration and so care was taken to model it. The IBH


                                                                                                                    75
Criteria   JORC Code explanation   Commentary
                                                                                                               2
                                         thickness from drill-hole data was ‘gridded’ in Datamine using IDW into the
                                         20 by 20 cells. This thickness was then subtracted from the elevation of the
                                         US_F to obtain the LS_R elevation from which a DTM was made.
                                      2. Unlike the USS the LSS is more often than not underlain by a layer of
                                         Carnallitite. For the LSS model the thickness of the LSS from drill-hole data
                                                                   2
                                         was gridded using IDW into the 20 x 20 mesh without influence from
                                         distance to the SALT_R or RDS zones. However, based on the geological
                                         understanding that LSS rarely occurs beneath USC the LSS model was cut
                                         accordingly, based on the USC model. Reflecting the model and based on
                                         analysis the following rule was also applied; that if the US is ‘full’ then the
                                         LSS is also full but only if the LS_R is within 30 m of the SALT_R. Finally, if
                                         the US_R is truncated by the SALT_R, then the remaining LS is modelled as
                                         full LSS due to its proximity to the SALT_R.

                                   For the US and LS Inferred Resources, the distribution of Sylvinite and Carnallitite
                                   was by manual interpretation based on available drill-hole data and plots of the
                                   distance between the seam and the SALT_R. The thickness of the USS and LSS was
                                   determined by gridding all USS drill-hole data. The Carnallitite was then modelled as
                                   the Inverse of the Sylvinite model, in adherence to the geological model.

                                   The Hangingwall seam model was created as follows
                                           1. The distance between the US_R and HWS_R in drill-hole intersection
                                                                     2
                                              was gridded using IDW into the 20 by 20 m mesh. This data was then
                                              added to the elevation of the US_R to create a HWS_R.
                                           2. Being close to the SALT_R (within 30 m in all cases) there is less
                                              variation in domain type; in all areas except for the zone labelled ‘A’ on
                                              Error! Reference source not found. of the original announcement
                                              (dated 6 July 2017) the USS is full Sylvinite (not underlain by USC). For
                                              all HWS outside of zone A the model was created by gridding the
                                                                  2
                                              thickness using IDW into the 20 x 20 mesh.
                                           3. The HWS model was created without input from distance to the SALT_R
                                              or RDS zones for the reasons stated above, by gridding of the drill-hole
                                              intersections.
                                           4. Within the area labelled ‘A’ on Error! Reference source not
                                              found. of the original announcement (dated 6 July 2017), the HWSS is


                                                                                                                   76
Criteria   JORC Code explanation   Commentary
                                             underlain by HWSC and so this was incorporated into the model.
                                         5. Finally, the HWS was ‘pinched’ upwards from a distance of 4 m below
                                             the SALT_R to reflect the geological observation that close to this
                                             surface the seam is leached.

                                   Modelling of the Footwall Seam (FWS)
                                           1. A different approach was adopted for the modelling of the FWS as the
                                                mode of occurrence is different to the other seams as described in
                                                section 2.3. Only Sylvinite (FWSS) was modelled as Carnallitite FWS is
                                                poorly developed or absent, and low grade.
                                           2. Drill-hole and seismic data was used to identify areas of leaching of the
                                                Salt Member based on subsidence of the overlying strata signs of
                                                marked disturbance of the salt, within which FWSS is typically
                                                developed. These were delineated in plan view.
                                                Where possible drill-hole data was used to guide thickness of the FWS,
                                                in other areas the thickness was interpreted using the seismic data. The
                                                FWS was ‘constructed’ from the top of the Cy7B upwards.

                                   As is standard practice in potash mining zones of subsidence which pose a potential
                                   risk to mining were identified using seismic and drill-hole data and classified from 1
                                   to 3 depending on severity where 3 is highest. Several drill-holes within or adjacent
                                   to these features show that the Salt Member is intact but has experienced some
                                   disturbance and leaching.

                                   The HWS, US and LS Mineral Resource models were ‘cookie-cut’ by these anomalies
                                   before calculation of the Mineral Resource estimate. The FWSS model was not cut as
                                   that Sylvinite is considered the product of potassium precipitation below the
                                   influence of the subsidence anomalies.

                                   Finally, all the potash seams were truncated (cut) by the SALT_R surface (base of the
                                   Anhydrite Member) as it is an unconformity.

                                   Traditional block modelling was employed for estimating %KCl, %Na, %Cl, %Mg, %S,
                                   %Ca and %Insols (insolubles). No assumptions were made regarding correlation
                                   between variables. The block model is orthogonal and rotated by 20 degrees


                                                                                                                    77
Criteria   JORC Code explanation   Commentary
                                   reflecting the orientation of the deposit. The block size chosen was 250m x 250m x
                                   1m to roughly reflect drill hole spacing, seam thickness and to adequately descretize
                                   the deposit without injecting error.

                                   Volumetric solids were created for the individual mineralized zones (i.e. Hangingwall
                                   Seam, Upper Seam, Lower Seam, Footwall Seam) for both Sylvinite and Carnallitite
                                   using drill hole data and re-processed depth migrated seismic data. The solids were
                                   adjusted by moving the nodes of the triangulated domain surfaces to exactly honour
                                   the drill hole intercepts. Numeric codes denoting the zones within the drill hole
                                   database were manually adjusted to ensure the accuracy of zonal intercepts. No
                                   assay values were edited or altered.

                                   Once the domain solids were created, they were used to code the drill hole assays
                                   and composites for subsequent statistical analysis. These solids or domains were
                                   then used to constrain the interpolation procedure for the mineral resource model,
                                   the solids zones were then used to constrain the block model by matching
                                   composites to those within the zones in a process called geologic matching. This
                                   ensures that only composites that lie within a particular zone are used to interpolate
                                   the blocks within that zone.

                                   Relative elevation interpolation methods were also employed which is helpful where
                                   the grade is layered or banded and is stratigraphically controlled. In the case of Kola,
                                   layering manifests itself as a relatively high-grade band at the footwall, which
                                   gradually decreases toward the hanging wall. Due to the undulations of the deposit,
                                   this estimation process accounts for changes in dip that are common in layered and
                                   stratified deposits.

                                   The estimation plan includes the following:

                                       -    Store the mineralized zone code and percentage of mineralization.
                                       -    Apply the density, based on calculated specific gravity.
                                       -    Estimate the grades for each of the metals using the relative elevation
                                             method and an inverse distance using three passes. The three estimation
                                             passes were used to estimate the Resource Model because a more realistic
                                             block-by-block estimation can be achieved by using more restrictions on
                                             those blocks that are closer to drill holes, and thus better informed.

                                                                                                                      78
Criteria       JORC Code explanation                                        Commentary
                                                                               - Include a minimum of one composites and a maximum of nine, with a
                                                                                   maximum of three from any one drill hole.

                                                                            The nature and distribution of the Kola Deposit shows uniform distribution of KCl
                                                                            grades without evidence of multiple populations which would require special
                                                                            treatment by either grade limiting or cutting. Therefore, it was determined that no
                                                                            outlier or grade capping was necessary.
                                                                            The grade models have been developed using inverse distance and anisotropic
                                                                            search ellipses measure 250 x 150 x 50 m and have been oriented relative to the
                                                                            main direction of continuity within each domain. Anisotropic distances have been
                                                                            included during interpolation; in other words, weighting of a sample is relative to the
                                                                            range of the ellipse. A sample at a range of 250 m along the main axis is given the
                                                                            same weight as a sample at 50 m distance located across the strike of the zone.

                                                                            A full set of cross-sections, long sections, and plans were used to check the block
                                                                            model on the computer screen, showing the block grades and the composite. There
                                                                            was no evidence that any blocks were wrongly estimated. It appears that block
                                                                            grades can be explained as a function of: the surrounding composites, the solids
                                                                            models used, and the estimation plan applied. In addition, manual ballpark
                                                                            estimates for tonnage to determine reasonableness was confirmed along with
                                                                            comparisons against the nearest neighbor estimate.

                                                                            As a check on the global tonnage, an estimate was made in Microsoft Excel by using
                                                                            the average seam thickness and determining a volume based on the proportion of
                                                                            holes containing Sylvinite versus the total number of holes (excluding those that did
                                                                                                                                                            3
                                                                            not reach the target depth) then applying the mean density of 2.1 (t/m ) to
                                                                            determine the total tonnes. This was carried out for the USS and LSS within the
                                                                            Measured and Indicated categories. A deduction was made to account for loss within
                                                                            subsidence anomalies. The tonnage of this estimate is within 10% of the tonnage of
                                                                            the reported Mineral Resource.


3.6 Moisture   -   Whether the tonnages are estimated on a dry basis or     Mineral Resource tonnages are reported on an insitu basis (with natural moisture
                   with natural moisture, and the method of determination   content), Sylvinite containing almost no moisture and Carnallitite containing
                   of the moisture content.                                 significant moisture within its molecular structure. Moisture content of samples was


                                                                                                                                                              79
Criteria                 JORC Code explanation                                      Commentary
                                                                                    measured using the ‘Loss on Drying’ (LOD) method at Intertek Genalysis as part of
                                                                                    the suite of analyses carried out. Data shows that for Sylvinite the average moisture
                                                                                    content is 0.076 % and the maximum value was 0.6%. Representative moisture
                                                                                    analyses of Carnallitite are difficult as it is so hygroscopic. 38% of the mass of the
                                                                                    mineral carnallite is due to water (6 H20 groups within its structure). Using the KCl
                                                                                    data to work out a mean carnallite content, the Carnallitite has an average moisture
                                                                                    content approximately 25% insitu. It can be reliably assumed that this amount of
                                                                                    moisture would have been held by the Carnallitite samples at the time of analysis of
                                                                                    potassium, in a temperate atmosphere for the duration that they were exposed.


3.7 Cut-off parameters   -   The basis of the adopted cut-off grade(s) or quality   For Sylvinite, a cut-off grade (COG) of 10% was determined by an analysis of the Pre-
                             parameters applied.                                    feasibility and ‘Phased Implementation study’ operating costs analysis and a review
                                                                                    of current potash pricing. The following operating costs were determined from
                                                                                    previous studies per activity per tonne of MoP (95% KCl) produced from a 33% KCl
                                                                                    ore, with a recovery of 89.5%:

                                                                                        -    Mining $30/t
                                                                                        -    Process $20/t
                                                                                        -    Infrastructure $20/t
                                                                                        -    Sustaining Capex $15/t
                                                                                        -    Royalties $10/t
                                                                                        -    Shipping $15/t

                                                                                    For the purpose of the COG calculation, it was assumed that infrastructure,
                                                                                    sustaining capex, royalty and shipping do not change with grade (i.e. are fixed) and
                                                                                    that mining and processing costs vary linearly with grade. Using these assumptions
                                                                                    of fixed costs ($60/t) and variable costs at 33% ($50/t) and a potash price of $250/t,
                                                                                    we can calculate a cut-off grade where the expected cost of operations equals the
                                                                                    revenue. This is at a grade of 8.6% KCl. To allow some margin of safety, a COG of 10%
                                                                                    is therefore proposed. For Carnallitite, reference was made to the Scoping Study for
                                                                                    Dougou which determined similar operating costs for solution mining of Carnallitite
                                                                                    and with the application ofa $250/t potash price a COG of 10% KCl is determined.


3.8 Mining factors or    -   Assumptions made regarding possible mining methods,    The Kola Sylvinite has been the subject of several scoping studies as well as a publicly

                                                                                                                                                                       80
Criteria                 JORC Code explanation                                             Commentary
assumptions                 minimum mining dimensions and internal (or, if                 available NI43-101 compliant PFS completed in September 2012 by SRK Consulting of
                            applicable, external) mining dilution. It is always            Denver. The study found that economic extraction of 2 to 5m thick seams with
                            necessary as part of the process of determining                conventional undergound mining machines is viable and that mining thickness as low
                            reasonable prospects for eventual economic extraction to       as 1.8m can be supported. Globally, potash is mined in similar deposits with seams
                            consider potential mining methods, but the assumptions         of similar geometry and form. The PFS determined an overall conversion of
                            made regarding mining methods and parameters when              resources to reserves of 26%. A Definitive Feasibility Study is underway.
                            estimating Mineral Resources may not always be
                            rigorous. Where this is the case, this should be reported      Mining of Carnallitite is not planned at this stage but in the form, grade and quantity
                            with an explanation of the basis of the mining                 of the Carnallitite does support reasonable ground for eventual economic extraction.
                            assumptions made.                                              A Scoping Study complete in 2015 for the nearby Dougou Carnallitite deposit further
                                                                                           supports this.


3.9 Metallurgical        -   The basis for assumptions or predictions regarding            The Kola Sylvinite ore represents a simple mineralogy, containing only sylvite, halite
factors or assumptions       metallurgical amenability. It is always necessary as part     and minor fragments of other insoluble materials. Sylvinite of this nature is well
                             of the process of determining reasonable prospects for        understood globally and can be readily processed. Separation of the halite from
                             eventual economic extraction to consider potential            sylvite by means of flotation has been proven in potash mining districts in Russia and
                             metallurgical methods, but the assumptions regarding          Canadas. Furthermore, metallurgical testwork was performed on all Sylvinite seams
                             metallurgical treatment processes and parameters made         (HWSS, USS, LSS and FWSS) at the Sasketchewan Research Council (SRC) which
                             when reporting Mineral Resources may not always be            confirmed the viability of processing the Kola ore by conventional flotation.
                             rigorous. Where this is the case, this should be reported
                             with an explanation of the basis of the metallurgical
                             assumptions made.
3.10 Environmental       -   Assumptions made regarding possible waste and process         The Kola deposit is located in a sensitive environmental setting in an area that abuts
factors or assumptions       residue disposal options. It is always necessary as part of   the Conkouati-Douli National Park (CDNP. Approximately 60% of the deposit is
                             the process of determining reasonable prospects for           located within the economic development zone of the CDNP, while the remainder is
                             eventual economic extraction to consider the potential        within the buffer zone around the park. The economic development zone does
                             environmental impacts of the mining and processing            permit mining activities if it is shown that impact can be minimised. For these
                             operation. While at this stage the determination of           reasons, Sintoukola Potash has focussed its efforts on understanding the
                             potential environmental impacts, particularly for a           environmental baseline and the potential impacts that the project will have. Social,
                             greenfields project, may not always be well advanced, the     water, hydrobiology, cultural, archeological, biodiversity, noise, traffic and economic
                             status of early consideration of these potential              baseline studies were undertaken as part of the ESIA process between 2011 and
                             environmental impacts should be reported. Where these         2013. This led to the preparation of an Equator Principles compliant ESIA in 2013 and
                             aspects have not been considered this should be reported      approval of this study by the government in the same year.
                             with an explanation of the environmental assumptions


                                                                                                                                                                             81
Criteria              JORC Code explanation                                           Commentary
                         made.                                                        Waste management for the project is simplified by the proximity to the ocean, which
                                                                                      acts as a viable receptor for NaCl from the process plant. Impacts on the forest and
                                                                                      fauna are minimised by locating the process plant and employee facilities at the
                                                                                      coast, outside the CDNP. Relationships with the national parks, other NGO’s and
                                                                                      community and government stakeholders have been maintained continuously since
                                                                                      2011 and engagement is continuing for the ongoing DFS. All stakeholders remain
                                                                                      supportive of the project.


3.11 Bulk density     -   Whether assumed or determined. If assumed, the basis        The separation of Carnallitite and Sylvinite (no instances of a mixed ore-type have
                          for the assumptions. If determined, the method used,        been observed) and that these rock types each comprise over 97.5% of only two
                          whether wet or dry, the frequency of the measurements,      minerals (Carnallitite of carnallite and halite; Sylvinite of sylvite and halite) means
                          the nature, size and representativeness of the samples.     that density is proportional to grade. The mineral sylvite has a specific gravity of 1.99
                                                                                      and halite of 2.17. Reflecting this, the density of Sylvinite is less if it contains more
                      -   The bulk density for bulk material must have been
                                                                                      sylvite. The same is true of Carnallitite, carnallite having a density of 1.60.
                          measured by methods that adequately account for void
                          spaces (vugs, porosity, etc), moisture and differences
                                                                                      Conventional density measurements using the weight in air and weight in water
                          between rock and alteration zones within the deposit.
                                                                                      method were problematic due to the soluble nature of the core and difficulty
                      -   Discuss assumptions for bulk density estimates used in      applying wax to salt. As an alternative, gas pycnometer analyses were carried out (71
                          the evaluation process of the different materials.          on Sylvinite and 37 on Carnallitite samples). Density by pycnometer was plotted
                                                                                      against grade for each and a regression line was plotted, the formula of which was
                                                                                      used in the Mineral Resource model to determine the bulk density of each block. As
                                                                                      a check on the pycnometer data, the theoretical bulk density (assumes a porosity of
                                                                                      nil) was plotted using the relationship between grade and density described above.
                                                                                      As a further check, a ‘field density’ was determined for Sylvinite and Carnallitite from
                                                                                      EK_49 and EK_51 on whole core, by weighing the core and measuring the volume
                                                                                      using a calliper, before sending samples for analysis. An average field density of 2.10
                                                                                      was derived from the Sylvinite samples, with an average grade of 39% KCl, and 1.70
                                                                                      for Carnallitite with an average grade of 21% KCl, supporting the pycnometer data.
                                                                                      The theoretical and field density data support the approach of determining bulk-
                                                                                      density.


3.12 Classification   -   The basis for the classification of the Mineral Resources   Drill-hole and seismic data are relied upon in the geological modelling and grade
                          into varying confidence categories.                         estimation. Across the deposit the reliability of the geological and grade data is high.
                                                                                      Grade continuity is less reliant on data spacing as within each domain grade variation
                      -   Whether appropriate account has been taken of all

                                                                                                                                                                          82
Criteria                 JORC Code explanation                                            Commentary
                            relevant factors (ie relative confidence in tonnage/grade     is small reflecting the continuity of the depositional environment and ‘all or nothing’
                            estimations, reliability of input data, confidence in         style of Sylvinite formation.
                            continuity of geology and metal values, quality, quantity
                            and distribution of the data).                                It is the data spacing that is the principal consideration as it determines the
                                                                                          confidence in the interpretation of the seam continuity and therefore confidence
                         -   Whether the result appropriately reflects the Competent
                                                                                          and classification; the further away from seismic and drill-hole data the lower the
                             Person’s view of the deposit.
                                                                                          confidence in the Mineral Resource classification, as summarized in Error!
                                                                                          Reference source not found. of the original announcement (dated 6 July 2017).
                                                                                          In the assigning confidence category, all relevant factors were considered and the
                                                                                          final assignment reflects the Competent Persons view of the deposit.


3.13 Audits or reviews   -   The results of any audits or reviews of Mineral Resource     No audits or reviews of the Mineral Resource have been carried out other than those
                             estimates.                                                   of professionals working with Met-Chem division of DRA Americas Inc., a subsidiary
                                                                                          of the DRA Group as part of the modelling and estimation work.


3.14 Discussion of       -   Where appropriate a statement of the relative accuracy       The Competent Person has a very high degree of confidence in the data and the
relative accuracy/           and confidence level in the Mineral Resource estimate        results of the Mineral Resource Estimate. The use of tightly spaced seismic that was
confidence                   using an approach or procedure deemed appropriate by         reprocessed using state-of-the-art techniques combined with high quality drill data
                             the Competent Person. For example, the application of        formed the solid basis from which to model the deposit. Industry standard best
                             statistical or geostatistical procedures to quantify the     practices were followed throughout and rigorous quality assurance and quality
                             relative accuracy of the resource within stated confidence   control procedures were employed at all stages. The Competent Person was
                             limits, or, if such an approach is not deemed appropriate,   provided all information and results without exception and was involved in all
                             a qualitative discussion of the factors that could affect    aspects of the program leading up to the estimation of resources. The estimation
                             the relative accuracy and confidence of the estimate.        strategy and method accurately depict tonnages and grades with a high degree of
                                                                                          accuracy both locally and globally.
                         -   The statement should specify whether it relates to global
                             or local estimates, and, if local, state the relevant
                                                                                          There is no production data from which to base an opinion with respect to accuracy
                             tonnages, which should be relevant to technical and
                                                                                          and confidence.
                             economic evaluation. Documentation should include
                             assumptions made and the procedures used.
                         -   These statements of relative accuracy and confidence of
                             the estimate should be compared with production data,
                             where available.



                                                                                                                                                                            83
                                                                   APPENDIX E
                                                 Glossary of Terms & Abbreviations


Glossary of Terms
Aquifer                        An underground layer of water-bearing permeable rock, rock fractures or unconsolidated materials
chevron pattern                A commonly used pattern used for the layout of mine rooms and pillars, also referred to as 'herring-bone'.
combi-wall                     A piled solution for construction of breakwaters
Competent Person               A ‘Competent Person’ is a minerals industry professional who is a Member or Fellow of The Australasian Institute of
                               Mining and Metallurgy, or of the Australian Institute of Geoscientists, or of a ‘Recognised Professional Organisation’
                               (RPO), as included in a list available on the JORC and ASX websites.
Cost and Freight (CFR)         Cost and freight are a legal term in international trade. In a contract specifying that a sale is made CFR, the seller is
                               required to arrange for the carriage of goods by sea to a port of destination and provide the buyer with the
                               documents necessary to obtain the goods from the carrier
Cut-off-grade (CoG)            The lowest grade, or quality, of mineralised material that qualifies as economically mineable and available in a given
                               deposit. May be defined on the basis of economic evaluation, or on physical or chemical attributes that define an
                               acceptable product specification.
Definitive Feasibility Study   Definitive Feasibility Study
drum-cutting type              A type of mining machine that uses rotating drums onto which teeth are set to cuts the rock into pieces which can be
                               transported
Engineering, Procurement,      Forms of engineering contract where EPC is generally in the form of a fixed price with risk of delivery sitting with the
Construction (EPC) and         contractor while EPCM the contractor acts for and behalf of the owner on a re-imbursible basis and the risk of project
Engineering, Procurement,      cost and time overruns sits more with the owner.
Construction and Management
(EPCM)
Exhaust and Intake Shafts      The Exhaust shaft is that from which the underground air moves out after it has ventilated the mine. The Intake shaft
                               is the that into which fresh air is circulated into the mine
Ex-works                       Cost of producing product excluding any transport and shipping costs
footwall                       The floor of the seam or mine opening (room)


                                                                                                                                                           84
Inferred Mineral Resources   An ‘Inferred Mineral Resource’ is that part of a Mineral Resource for which quantity and grade (or quality) are
                             estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not
                             verify geological and grade (or quality) continuity. It is based on exploration, sampling and testing information
                             gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes.
JORC Code                    (Australasian) Joint Ore Reserves Committee requirements for the reporting of Exploration Results, Mineral Resources
                             and Ore Reserves (2012 edition)
Life-of-Mine (LoM)           The duration in years and months from commencement of mining to the end of mining
Main Haulage Access Drift    The tunnel (haulage) that provides the main access to each area of the mine
Metallurgical recoveries     The % of the contained KCl that can be extracted from the ore by the processing
Mine Gate Cost               Cost of getting product to mine gate, generally ex-works plus any additional storage and transport costs to mine gate
Mining royalty               Cost payable to the government of RoC as documented din the mining convention
Muriate of Potash (MoP)      The saleable form of potassium chloride, comprising a minimum of 95% KCl
Ore and orebody              Ore is the economically and technically mineable material. The orebody is the mineable part of the deposit
                             comprising the Ore Reserves
Ore Bins                     Large storage containers into which ore is dumped and stored prior to further transport
Ore haulage                  The tunnels from which the ore is transported
Ore Reserve                  The economically mineable part of a Measured and/or Indicated Mineral Resource. It includes diluting materials and
                             allowances for losses, which may occur when the material is mined or extracted and is defined by studies at Pre-
                             Feasibility or Feasibility level as appropriate that include application of Modifying Factors. Such studies demonstrate
                             that, at the time of reporting, extraction could reasonably be justified
Pocket Lift conveyor         A type of conveyor belt with pockets allowing high-angle or vertical movement of material
Production Panels            Sections or the mine that are worked by each mining team
Geological Anomalies         Features that affect the integrity of the evaporite and overlying rocks found in many potash deposits and depending
                             on the severity of the type and severity of the anomaly, may represent a zone of hydrogeological risk due to
                             connection between the evaporite (hosting the potash) and water bearing cover rocks above. At Kola they were
                             classified 1-3 according to severity. For the mine design the following was applied: within Class 1 anomalies, no
                             production panels planned but development of main haulage roads acceptable, around Class 2 anomalies a stand-off
                             distance of 30 m from any underground development was applied, around Class 3 anomalies a stand-off distance of
                             60 m from any underground development was applied
Sylvinite                    A rock type comprised predominately of the mineral sylvite and halite. Sylvite is an evaporite mineral, potassium
                             chloride (KCl). Halite is an evaporite mineral, sodium chloride (NaCl).
%w                           Percentage by weight


Abbreviations


                                                                                                                                                       85
CFR      Cost and Freight
CoG      Cut-off Grade
CP       Competent Person
CRU      Commodities Research Unit owned by CRUGroup
DFS      Definitive Feasibility Study
EBITDA   Earnings before interest, tax, depreciation and amortization
EPC      Engineering, Procurement and Construction
EPCM     Engineering, Procurement and Construction Management
ESIA     Environmental and Social Impact Assessment
ESMP     Environmental and Social Management Plan
FC       The French Consortium
FCTU     Floating Crane Transhipper Unit
FWS      Footwall Seam
GIIP     Good International Industry Practice
HWS      Hangingwall Seam
IFC      International Finance Corporation
IRR      Internal rate of Return
JORC     (Australasian) Joint Ore Reserves Committee
KCl      Potassium Chloride
LoM      Life-of-Mine
LS       Lower Seam
MoP      Muriate of Potash
MOPG     Muriate of Potash - Granular
MOPS     Muriate of Potash - Standard
MRE      Mineral Resource Estimate
Mtpa     Million tons per annum
MVA      Mega Volt Amp



                                                                        86
NPV10 (real)   Net Present Value
OGVs           Ocean Going Vessels
PFS            Pre-Feasibility Study
PPR            Potash Process Review
RoC            Republic of Congo
RPO            Recognized Professional Organization
RR             Reserve Review
SPSA           Sintoukola Potash SA
SWI            Seawater Intake
SWO            Seawater Outfall
TEM            Techno-Economic Modelling
US             Upper Seam




                                                      87

Date: 29/01/2019 09:00:00 Produced by the JSE SENS Department. The SENS service is an information dissemination service administered by the JSE Limited ('JSE'). 
The JSE does not, whether expressly, tacitly or implicitly, represent, warrant or in any way guarantee the truth, accuracy or completeness of
 the information published on SENS. The JSE, their officers, employees and agents accept no liability for (or in respect of) any direct, 
indirect, incidental or consequential loss or damage of any kind or nature, howsoever arising, from the use of SENS or the use of, or reliance on,
 information disseminated through SENS.

Share This Story